Patents by Inventor Martin Telting-Diaz

Martin Telting-Diaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7651858
    Abstract: This invention provides methods of using ion-detecting microspheres containing an ionphore and a chromoionphore in clinical laboratory instrumentation such as flow cytometry for sample analysis. In one embodiment, the microspheres are contacted with a flowing stream of a sample under conditions that allow the ion-selective ionophores to complex with the ions in the sample, and to cause deprotonation of the chromoionophore. The complexes are then exposed to an excitation wavelength light source suitable for exciting the deprotonated chromoionophore to emit a fluorescence signal pattern. Detection of the fluorescence signal pattern emitted by the deprotonated chromoionophore in microspheres containing the complexes allows for determination of the presence of the target ions in the sample. In one embodiment, lead ion-detecting microspheres are provided that can detect nanomolar levels of lead ions with response times on the order of minutes.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: January 26, 2010
    Assignees: Auburn University, Beckman Coulter, Inc.
    Inventors: Eric Bakker, Martin Telting-Diaz, Mike Bell
  • Publication number: 20080173846
    Abstract: This invention provides methods of using ion-detecting microspheres containing an ionphore and a chromoionphore in clinical laboratory instrumentation such as flow cytometry for sample analysis. In one embodiment, the microspheres are contacted with a flowing stream of a sample under conditions that allow the ion-selective ionophores to complex with the ions in the sample, and to cause deprotonation of the chromoionophore. The complexes are then exposed to an excitation wavelength light source suitable for exciting the deprotonated chromoionophore to emit a fluorescence signal pattern. Detection of the fluorescence signal pattern emitted by the deprotonated chromoionophore in microspheres containing the complexes allows for determination of the presence of the target ions in the sample. In one embodiment, lead ion-detecting microspheres are provided that can detect nanomolar levels of lead ions with response times on the order of minutes.
    Type: Application
    Filed: July 17, 2007
    Publication date: July 24, 2008
    Applicants: Auburn University, Beckman Coulter, Inc.
    Inventors: Eric Bakker, Martin Telting-Diaz, Mike Bell
  • Patent number: 7247489
    Abstract: This invention provides methods of using ion-detecting microspheres containing an ionphore and a chromoionphore in clinical laboratory instrumentation such as flow cytometry for sample analysis. In one embodiment, the microspheres are contacted with a flowing stream of a sample under conditions that allow the ion-selective ionophores to complex with the ions in the sample, and to cause deprotonation of the chromoionophore. The complexes are then exposed to an excitation wavelength light source suitable for exciting the deprotonated chromoionophore to emit a fluorescence signal pattern. Detection of the fluorescence signal pattern emitted by the deprotonated chromoionophore in microspheres containing the complexes allows for determination of the presence of the target ions in the sample. In one embodiment, lead ion-detecting microspheres are provided that can detect nanomolar levels of lead ions with response times on the order of minutes.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: July 24, 2007
    Assignees: Auburn University, Beckman Coulter, Inc.
    Inventors: Eric Bakker, Martin Telting-Diaz, Mike Bell
  • Publication number: 20040058384
    Abstract: This invention provides methods of using ion-detecting microspheres containing an ionphore and a chromoionphore in clinical laboratory instrumentation such as flow cytometry for sample analysis. In one embodiment, the microspheres are contacted with a flowing stream of a sample under conditions that allow the ion-selective ionophores to complex with the ions in the sample, and to cause deprotonation of the chromoionophore. The complexes are then exposed to an excitation wavelength light source suitable for exciting the deprotonated chromoionophore to emit a fluorescence signal pattern. Detection of the fluorescence signal pattern emitted by the deprotonated chromoionophore in microspheres containing the complexes allows for determination of the presence of the target ions in the sample. In one embodiment, lead ion-detecting microspheres are provided that can detect nanomolar levels of lead ions with response times on the order of minutes.
    Type: Application
    Filed: March 7, 2003
    Publication date: March 25, 2004
    Applicant: Auburn University
    Inventors: Eric Bakker, Martin Telting-Diaz, Mike Bell