Patents by Inventor Martin Tenzer

Martin Tenzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10686176
    Abstract: A lithium-sulfur cell includes a lithium-containing anode, a sulfur-containing cathode and a separator arranged between the lithium-containing anode and the sulfur-containing cathode. To suppress a shuttle mechanism and to prevent a loss of active material, the separator includes a base layer and a polysulfide barrier layer. The polysulfide barrier layer is formed on the cathode side of the separator.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: June 16, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Marcus Wegner, Jean Fanous, Jens Grimminger, Martin Tenzer
  • Patent number: 10673043
    Abstract: A separator for an energy store. The separator may be used in a lithium-sulfur battery in particular. To achieve improved cycle stability, the separator has at least one first layer and at least one second layer, the at least one first layer containing a material having an affine property with respect to at least one active electrode material, and the at least one second layer containing a material having a repellent property with respect to at least one active electrode material. The at least one first layer and the at least one second layer may be situated directly adjacent to one another. Also described is an energy store including the separator.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: June 2, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Marcus Wegner, Jens Grimminger, Martin Tenzer, Jean Fanous
  • Patent number: 10553858
    Abstract: A lithium electrode includes a first lithium layer made of lithium or a lithium alloy, a current collector situated on a first side of the lithium layer, and a lithium-ion-conducting protective layer situated on a second side of the lithium layer opposite the first side. An intermediate layer completely covers the second side of the lithium layer and is situated between the lithium layer and the protective layer. The protective and intermediate layers have an electrical conductivity of less than 10?10 S/cm. The lithium electrode may be used as the anode of a rechargeable lithium-ion battery. A lithium layer is applied to a current collector, an intermediate layer is applied to the lithium layer so that the intermediate layer completely covers the lithium layer, and a lithium-ion-conducting protective layer is applied to the intermediate layer.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: February 4, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Jean Fanous, Martin Tenzer
  • Patent number: 10454105
    Abstract: An electrode for an energy accumulator comprises a substrate, an active anode layer having an active anode material, the active anode material being at least partially a lithium, a lithium alloy and/or a lithium intercalation material, at least one lithium-ion-conducting layer having a material composition which gradually changes over a layer thickness and has at least one lithium-ion-conducting component. A method for forming an electrode for an energy accumulator, and a lithium-ion battery comprising an electrode are also disclosed.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: October 22, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Martin Tenzer, Thomas Wöhrle, Calin Iulius Wurm
  • Patent number: 10424766
    Abstract: A battery housing including at least one interior space for accommodating at least one battery, and including at least one contact element which, in a connection position, establishes a connection to a counter-contact element, the connection passing through the battery housing out of the interior space and/or into the interior space, the connection being cut off in an out-of-contact position with the counter-contact element, the counter-contact element being situated on an insulation component movable relative to the battery housing, which is movable from a first position, in which the counter-contact element and the contact element are in the connection position, into a second position, in which the counter-contact element and the contact element are in the out-of-contact position, the contact element being thermally insulated in the out-of-contact position by the insulation component.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: September 24, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Martin Tenzer, Jean Fanous, Joerg Poehler
  • Patent number: 10374212
    Abstract: A battery system includes at least one lithium cell with an electrolyte having at least one polymer which is configured to be impregnated with an electrolyte fluid. In order to increase the capacity, the life and the safety of the battery system, the battery system further includes at least one electrolyte fluid metering device, by which at least one component of the electrolyte fluid can be supplied to the lithium cell and/or by which electrolyte fluid can be discharged from the lithium cell.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: August 6, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Marcus Wegner, Matthias Mueller, Martin Tenzer
  • Publication number: 20190165347
    Abstract: A retaining element provided for two-stage fastening to an accumulator or which is part of an accumulator, safeguards against removal from a retaining device. The retaining device is oriented toward the retaining element and is fastened in an interior of tubes of a bicycle frame of an electrically driven bicycle.
    Type: Application
    Filed: May 12, 2017
    Publication date: May 30, 2019
    Inventors: Christian Trif, Christoph Schumacher, Frank Hummel, Martin Tenzer, Volker Jabs
  • Patent number: 10249452
    Abstract: An assemblage having a thermally insulating switch and a thermal insulator for constituting an electrical conductor passthrough through the thermal insulator. The thermal insulator insulates an inner space from an outer space, the assemblage having inner connector on the side of the inner space and outer connector on the side of the outer space, which are electrically conductively connectable by the switch. The assemblage has a control unit for controlling the thermally insulating switch, a current flowing through the switch is detectable by the control unit, the switch is controllable by the control unit in such a way that the switch is actuatable only in a substantially zero-current state, and the switch is disposed in the thermal insulator in such a way that thermal insulation between the inner connector and the outer connector is accomplished by way of the switch in the open state.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: April 2, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventors: Andreas Letsch, Joerg Thielen, Martin Tenzer
  • Patent number: 10164297
    Abstract: A protective layer system for a metallic lithium-containing anode of a lithium cell, for example a lithium-sulfur cell and/or lithium-oxygen cell. To increase the service life and reliability of the cell, the protective layer system includes a lithium ion-conducting layer, in particular an inorganic layer, on the anode side. The anode-side layer has an anode contact side which rests against or which may be placed against the anode. At least one lithium ion-conducting layer, in particular a polymer layer, which contains at least one agent which is reactable with metallic lithium to form an electrically insulating solid is situated on a side of the anode-side layer opposite from the anode contact side. Moreover, the invention relates to an anode which is equipped with such a protective layer system, a lithium cell, and a lithium battery.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: December 25, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jean Fanous, Martin Tenzer
  • Patent number: 10096834
    Abstract: A method is provided for manufacturing a polyacrylonitrile-sulfur composite material, the polyacrylonitrile-sulfur composite material having an sp2 hybrid proportion, with respect to the total carbon atoms included in the composite material, of greater than or equal to 85% including the method steps: a) reaction of polyacrylonitrile with sulfur at a temperature of greater than or equal to 450° C., in particular greater than or equal to 550° C.; b) immediate purification of the product obtained in method step a); and c) drying the purified product, if necessary. A composite material manufactured in this way may be used in particular in an active material of a cathode of a lithium-ion battery and offers a particularly high rate capacity. In addition, methods are provided for manufacturing an active material for an electrode, a polyacrylonitrile-sulfur composite material and an energy store.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: October 9, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Martin Tenzer, Malte Rolff, Jean Fanous
  • Patent number: 10020490
    Abstract: In a method for producing an anode for a lithium cell, and/or a lithium cell as well as anodes and lithium cells of this type, to extend the service life of the lithium cell and to selectively form a first protective layer including electrolytic decomposition products, on an anode including metallic lithium, a first electrolyte is applied on the anode ex situ, i.e., prior to assembling the lithium cell to be produced. To stabilize the first protective layer, a second protective layer is applied in a subsequent method step.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 10, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Marcus Wegner, Jens Grimminger, Martin Tenzer, Timm Lohmann
  • Publication number: 20180005774
    Abstract: An assemblage having a thermally insulating switch and a thermal insulator for constituting an electrical conductor passthrough through the thermal insulator. The thermal insulator insulates an inner space from an outer space, the assemblage having inner connector on the side of the inner space and outer connector on the side of the outer space, which are electrically conductively connectable by the switch. The assemblage has a control unit for controlling the thermally insulating switch, a current flowing through the switch is detectable by the control unit, the switch is controllable by the control unit in such a way that the switch is actuatable only in a substantially zero-current state, and the switch is disposed in the thermal insulator in such a way that thermal insulation between the inner connector and the outer connector is accomplished by way of the switch in the open state.
    Type: Application
    Filed: January 12, 2016
    Publication date: January 4, 2018
    Inventors: Andreas Letsch, Joerg Thielen, Martin Tenzer
  • Patent number: 9804090
    Abstract: An energy store system, including at least one cell element situated in a cell region having an anode, a cathode and an electrolyte system that is situated between the anode and the cathode and that is particularly at least partially liquid, the anode, the cathode and/or the electrolyte system being configured so that, as a function of a charging or discharging process of the cell element, functioning material is situated in the electrolyte system, and the functional material situated in the electrolyte system being ascertainable qualitatively and/or quantitatively. Because of such an energy store system, operating states of an energy store or a cell may be ascertained particularly simply and accurately. Also described is a related state detection system.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: October 31, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Marcus Wegner, Jens Grimminger, Martin Tenzer, Jean Fanous
  • Publication number: 20170279092
    Abstract: A battery housing including at least one interior space for accommodating at least one battery, and including at least one contact element which, in a connection position, establishes a connection to a counter-contact element, the connection passing through the battery housing out of the interior space and/or into the interior space, the connection being cut off in an out-of-contact position with the counter-contact element, the counter-contact element being situated on an insulation component movable relative to the battery housing, which is movable from a first position, in which the counter-contact element and the contact element are in the connection position, into a second position, in which the counter-contact element and the contact element are in the out-of-contact position, the contact element being thermally insulated in the out-of-contact position by the insulation component.
    Type: Application
    Filed: August 5, 2015
    Publication date: September 28, 2017
    Inventors: Martin Tenzer, Jean Fanous, Joerg Poehler
  • Patent number: 9761912
    Abstract: A battery, particularly a lithium-metal battery or a lithium-ion battery, having at least one galvanic cell surrounded by a cell housing. To increase the safety of the battery and to close up again a cell opened by a safety device or by a leakage, the inner chamber of the cell housing of the at least one cell includes a first chemical component, a chamber bordering on at least one section of the outer side of the housing including a second chemical component; a solid reaction product being developable by the chemical reaction of the first and second chemical components. The first component is containable in the electrolyte of the cell and the second component in a cooling and/or tempering arrangement. Also described is a cooling and/or tempering arrangement based on it, and an electrolyte, an electrolytic liquid, a safety system, a method and a mobile or stationary system.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: September 12, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Martin Tenzer, Jens Grimminger, Jean Fanous, Marcus Wegner
  • Patent number: 9755281
    Abstract: A method for connecting battery cells in a battery is provided, the battery including at least one measuring battery cell and at least one standard battery cell in a series connection, the standard battery cell having at least a nominal capacity which is greater than a nominal capacity threshold, the measuring battery cell having a nominal capacity which is less than the nominal capacity threshold, the measuring battery cell having a switchable bypass, the method including: monitoring a state of charge of the at least one measuring battery cell; and bypassing the at least one measuring battery cell using the switchable bypass if the state of charge of the at least one measuring battery cell drops below a predefined state of charge threshold.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: September 5, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Joerg Poehler, Martin Tenzer
  • Publication number: 20170229712
    Abstract: A layer combination for an electrode can be used in rechargeable electrochemical cells. The rechargeable electrochemical cells are in the form of lithium batteries, e.g. a lithium-sulfur battery or a lithium-oxygen battery. The layer combination includes at least one superhydrophobic, nanostructured protective layer which repels polar substances.
    Type: Application
    Filed: July 30, 2015
    Publication date: August 10, 2017
    Inventors: Thomas Wöhrle, Martin Tenzer
  • Patent number: 9705129
    Abstract: The subject matter of the present is a method for manufacturing an electrode for an electrochemical energy reservoir, in particular for a lithium-ion battery, encompassing the method steps of: a) furnishing a mixture of initial substances for formation of a lithium titanate; b) calcining the mixture of initial substances for formation of a lithium titanate; c) adding to the mixture of initial substances for formation of a lithium titanate, before and/or after calcination, a component encompassing sulfur and optionally lithium; and/or d) adding a pore former, before and/or after calcination, to the mixture of initial substances for formation of a lithium titanate; e) sintering the calcined product; and f) optionally removing the pore former from the calcined and optionally sintered product. Electrodes having a particularly defined pore structure can be generated with a method of this kind, thereby making possible particularly good capacity that is stable over the long term.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: July 11, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Martin Tenzer, Jens Grimminger, Bernd Schumann, Ulrich Eisele, Constanze Sorhage, Ingo Kerkamm
  • Publication number: 20170187075
    Abstract: A protective layer system for a metallic lithium-containing anode of a lithium cell, for example a lithium-sulfur cell and/or lithium-oxygen cell. To increase the service life and reliability of the cell, the protective layer system includes a lithium ion-conducting layer, in particular an inorganic layer, on the anode side. The anode-side layer has an anode contact side which rests against or which may be placed against the anode. At least one lithium ion-conducting layer, in particular a polymer layer, which contains at least one agent which is reactable with metallic lithium to form an electrically insulating solid is situated on a side of the anode-side layer opposite from the anode contact side. Moreover, the invention relates to an anode which is equipped with such a protective layer system, a lithium cell, and a lithium battery.
    Type: Application
    Filed: April 8, 2015
    Publication date: June 29, 2017
    Inventors: Jean Fanous, Martin Tenzer
  • Patent number: 9680140
    Abstract: A battery anode component for a battery cell including a current collector component having a lithium receiving side in which at least two spatially separated recesses are formed as lithium receiving chambers, at least two lithium-based anode material units which are situated in the at least two lithium receiving chambers, and a protective cover which covers the lithium receiving side at least partially and with the aid of which outer surfaces of the at least two lithium-based anode material units which are exposed by the current collector component are covered. A method is also described for manufacturing a battery anode component for a battery cell.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: June 13, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventor: Martin Tenzer