Patents by Inventor Martin Wiechmann

Martin Wiechmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220047419
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Application
    Filed: August 26, 2021
    Publication date: February 17, 2022
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 11103381
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: August 31, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Publication number: 20200085616
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Application
    Filed: August 21, 2019
    Publication date: March 19, 2020
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 10390994
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: August 27, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Publication number: 20190110922
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 18, 2019
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 10098784
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: October 16, 2018
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Publication number: 20180190387
    Abstract: The invention refers to a system to treat and/or diagnose a patient's eye. The system in this invention comprises several devices for the treatment and/or diagnosis of the eye as well as means for the logical linking of the devices with each other, such as systems for the spatial positioning of the devices relative to each other, configurations for the positioning of the patient and the eye to be treated relative to the respective devices, systems for the controlled supply of the devices with power and auxiliary power, and/or notification tools to transmit information or control commands between the above-mentioned devices, units, configurations and systems, and to put out information.
    Type: Application
    Filed: December 22, 2017
    Publication date: July 5, 2018
    Applicant: Carl Zeiss Meditec AG
    Inventors: Dirk Muehlhoff, Martin Wiechmann, Mark Bischoff, Karsten Festag
  • Publication number: 20160361198
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 15, 2016
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 9517126
    Abstract: The invention relates to an ophthalmologic implant, in particular an intraocular lens. The implant includes at least one marker produced with at least one dye which is a fluorescent dye having a maximum emission outside of the light spectrum visible to humans or an absorbing dye having a maximum absorption outside the light spectrum visible to humans. The said fluorescent or absorbing dye does not substantially influence light transmission of the ophthalmologic implant within the visual spectral range. The invention further relates to a microscopy system and an optical detection process for detecting and/or identifying the disclosed ophthalmologic implant.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 13, 2016
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Mario Gerlach
  • Patent number: 9370445
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: June 21, 2016
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Publication number: 20140288537
    Abstract: A method for adjusting sub-threshold photocoagulation of a retina includes directing a beam from a radiation source at the retina. The beam has a spatially distributed intensity profile including at least one maxima, which comprises a total of less than 20% of a cross sectional area of the beam at a plane of the retina, and an entire remaining area of the beam has an intensity that is less than 80% of the intensity of the at least one maxima. The remaining area is configured to provide sub-threshold coagulation so that visually detectable coagulation is provided only in areas of the at least one maxima.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Applicant: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Manfred Dick, Diego Zimare, Regina Schuett
  • Publication number: 20140236134
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Application
    Filed: February 17, 2014
    Publication date: August 21, 2014
    Applicant: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 8740886
    Abstract: An apparatus for refractive ophthalmic surgery by laser radiation including a source of radiation which emits a processing beam a beam path for focusing and scanning. The beam path focuses the processing beam into a cornea of an eye and shifts a position of a focus therein. A beam splitting device generates several foci in the cornea and divides the processing beam into a primary beam and at least one secondary beam. The primary and secondary beams have substantially the same cross section as the processing beam which is incident on the beam splitting device and the beam-splitting device introduces a separation between the primary and secondary beams. The primary and secondary beams expand in the beam path. A contact glass induces a pre-defined geometric boundary surface at the cornea.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 3, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Mark Bischoff, Martin Wiechmann, Gregor Stobrawa, Lars-Christian Wittig
  • Patent number: 8685006
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: April 1, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Publication number: 20130231644
    Abstract: An apparatus for refractive ophthalmic surgery by laser radiation including a source of radiation which emits a processing beam a beam path for focusing and scanning. The beam path focuses the processing beam into a cornea of an eye and shifts a position of a focus therein. A beam splitting device generates several foci in the cornea and divides the processing beam into a primary beam and at least one secondary beam. The primary and secondary beams have substantially the same cross section as the processing beam which is incident on the beam splitting device and the beam-splitting device introduces a separation between the primary and secondary beams. The primary and secondary beams expand in the beam path. A contact glass induces a pre-defined geometric boundary surface at the cornea.
    Type: Application
    Filed: February 21, 2013
    Publication date: September 5, 2013
    Applicant: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Mark Bischoff, Martin Wiechmann, Gregory Stobrawa, Lars Wittig
  • Patent number: 8491575
    Abstract: An apparatus for generating a correcting cut surface in the cornea including a laser unit, which can focus and move pulsed laser radiation; a first contact element; and a control unit, controlling the laser unit which has a standard setting which, when a standard curvature is imposed upon corneal surface by the first contact element, would lead to a standard cut surface. The standard cut surface has a known curvature with respect to a reference surface. The curvature, with respect to the reference surface of the correcting cut surface to be generated deviates from the known curvature of the standard cut surface. The apparatus includes a second contact element adapted to generate the correcting cut surface, which cornea imposes an actual curvature deviating from the standard curvature, thus generating a cut surface using the standard setting results in the correcting cut surface to be generated.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: July 23, 2013
    Assignee: Carl Zeiss Meditec AG
    Inventors: Juergen Kuehnert, Martin Wiechmann, Michael Bergt
  • Patent number: 8388607
    Abstract: An apparatus for material processing by laser radiation, including a laser source which emits a processing beam, and a beam path for focusing and scanning, the beam path focusing the processing beam into a processing volume and shifting the position of the focus therein. A beam splitting device generates several foci in the processing volume and the beam splitting device splits the processing beam up into a primary beam and at least one secondary beam and leaves the cross section of the beam in a pupil plane of the beam path unchanged during said division and introduces an angle of separation between the primary and secondary beams, so that these beams expand in the beam path in directions which differ by the angle of separation.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: March 5, 2013
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Mark Bischoff, Martin Wiechmann, Gregory Stobrawa, Lars Christian Wittig
  • Patent number: 8315280
    Abstract: A multiwavelength laser system for opthalmological applications. The system including a first semiconductor diode laser including a first working beam of a first wavelength; and at least one second semiconductor diode laser having a second working beam of a second wavelength. The second wavelength being different from the first wavelength.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 20, 2012
    Assignee: Carl Zeiss Meditec AG
    Inventors: Diego Zimare, Manfred Dick, Martin Wiechmann, Alexander Kalies, Regina Schuett
  • Patent number: 8289382
    Abstract: The present invention makes it possible to make high-quality recordings of the anterior and/or posterior segments of the eye as an individual image or also as a sequence of images without increasing the radiation load on the eye to be examined. In the method according to the invention, at least one pre-flash is used in order to determine an optimal exposure time for the main flash based on the recording of the pre-flash which is reflected by the object to be recorded. Both the pre-flash and the main flash are controllable and the recordings of the pre-flash and main flash are recorded with the same sensor of the electronic camera and are evaluated electronically by a control unit, and the recording of the main flash and, as the case may be, of the pre-flash is analyzed and/or corrected and displayed to the user.
    Type: Grant
    Filed: November 24, 2007
    Date of Patent: October 16, 2012
    Assignee: Carl Zeiss Meditec AG
    Inventors: Daniel Bublitz, Thomas Mohr, Uwe Mohrholz, Michael Trost, Martin Wiechmann, Manfred Dick
  • Patent number: 8167428
    Abstract: An applicator for an ophthalmologic treatment or diagnostic device, wherein a laser beam and an illumination beam are directed at the eye and light reflected from the eye is fed to an examining beam path. A reflective surface is provided for the reflection of the illumination beam and comprises an optical aperture for the laser beam.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: May 1, 2012
    Assignee: Carl Zeiss Meditec AG
    Inventors: Egon Luther, Martin Wiechmann, Diego Zimare, Jörg Heinrich