Patents by Inventor Martinus Cornelius Johannes Maria van Riel

Martinus Cornelius Johannes Maria van Riel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11402405
    Abstract: A method and system for performing subsurface atomic force microscopy measurements, the system comprising: a signal source for generating an drive signal; a transducer configured to receive the drive signal for converting the drive signal into vibrational waves and coupling said vibrational waves into a stack comprising a sample for interaction with subsurface features within said sample; cantilever tip for contacting the sample for measuring surface displacement resulting from the vibrational waves to determine subsurface features; wherein the system includes a measurement device for measuring a measurement signal returning from the transducer during and/or in between the subsurface atomic force microscopy measurements.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 2, 2022
    Assignee: Nederlandse Oganisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Paul Louis Maria Joseph Van Neer, Maarten Hubertus Van Es, Hamed Sadeghian Marnani, Rutger Meijer Timmerman Thijssen, Martinus Cornelius Johannes Maria Van Riel
  • Patent number: 11320454
    Abstract: The present document relates to a scanning probe microscopy system and method for mapping nanostructures on the surface of a sample. The system comprises a sample support structure, a scan head including a probe comprising a cantilever and a probe tip, and an actuator for scanning the probe tip relative to the sample surface. The system also includes an optical source, and a sensor unit for obtaining a sensor signal indicative of a position of the probe tip. The sensor unit includes a partially reflecting element for reflecting a reference fraction and for transmitting a sensing fraction of the optical signal. It further includes directional optics for directing the sensing fraction as an optical beam towards the probe tip, and for receiving a reflected fraction thereof to provide a sensed signal. Moreover the sensor includes an interferometer for providing one or more output signals, and signal conveyance optics for conveying the sensed signal and the reference signal to the interferometer.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: May 3, 2022
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Aukje Arianne Annette Kastelijn, Peter Martijn Toet, Geerten Frans Ijsbrand Kramer, Evert Nieuwkoop, Albert Dekker, Martinus Cornelius Johannes Maria van Riel, Rik Kruidhof
  • Publication number: 20210389345
    Abstract: A method and system for performing subsurface atomic force microscopy measurements, the system comprising: a signal source for generating an drive signal; a transducer configured to receive the drive signal for converting the drive signal into vibrational waves and coupling said vibrational waves into a stack comprising a sample for interaction with subsurface features within said sample; cantilever tip for contacting the sample for measuring surface displacement resulting from the vibrational waves to determine subsurface features; wherein the system includes a measurement device for measuring a measurement signal returning from the transducer during and/or in between the subsurface atomic force microscopy measurements.
    Type: Application
    Filed: October 24, 2019
    Publication date: December 16, 2021
    Inventors: Paul Louis Maria Joseph VAN NEER, Maarten Hubertus VAN ES, Hamed SADEGHIAN MARNANI, Rutger MEIJER TIMMERMAN THIJSSEN, Martinus Cornelius Johannes Maria VAN RIEL
  • Patent number: 11067597
    Abstract: A method of performing atomic force microscopy (AFM) measurements, uses an ultrasound transducer to transmit modulated ultrasound waves with a frequency above one GHz from the ultrasound transducer to a top surface of a sample through the sample from the bottom surface of the sample. Effects of ultrasound wave scattering are detected from vibrations of an AFM cantilever at the top surface of the sample. Before the start of the measurements, a drop of a liquid is placed on a top surface of the ultrasound transducer. The sample is placed on the top surface of the ultrasound transducer, whereby the sample presses the liquid in the drop into a layer of the liquid between the top surface of the ultrasound transducer and a bottom surface of the sample. The AFM measurements are started after a thickness of the layer of the liquid has stabilized.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: July 20, 2021
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Martinus Cornelius Johannes Maria Van Riel, Paul Louis Maria Joseph Van Neer, Hamed Sadeghian Marnani, Maarten Hubertus Van Es
  • Patent number: 11035879
    Abstract: The present document relates to a Z-position motion stage for use in a scanning probe microscopy system. The stage comprises a support element for mounting the z-position motion stage on a scan head, and at least one first actuator mounted on the support element for enabling motion of a probe of the scanning probe microscopy system. The probe is connected to or attachable to the z-position motion stage. The support element and the at least one first actuator are shaped and mounted such as to form a rotation symmetric element which is rotation symmetric around a notional common longitudinal axis. The document further relates to a scan head, a method of manufacturing a z-position motion stage, and a Z-position motion stage obtained with such a method.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: June 15, 2021
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Albert Dekker, Martinus Cornelius Johannes Maria van Riel, Aukje Arianne Annette Kastelijin
  • Publication number: 20200348334
    Abstract: A method of performing atomic force microscopy (AFM) measurements, uses an ultrasound transducer to transmit modulated ultrasound waves with a frequency above one GHz from the ultrasound transducer to a top surface of a sample through the sample from the bottom surface of the sample. Effects of ultrasound wave scattering are detected from vibrations of an AFM cantilever at the top surface of the sample. Before the start of the measurements a drop of a liquid is placed on a top surface of the ultrasound transducer. The sample is placed on the top surface of the ultrasound transducer, whereby the sample presses the liquid in the drop into a layer of the liquid between the top surface of the ultrasound transducer and a bottom surface of the sample. The AFM measurements are started after a thickness of the layer of the liquid has stabilized.
    Type: Application
    Filed: November 2, 2018
    Publication date: November 5, 2020
    Inventors: Martinus Cornelius Johannes Maria VAN RIEL, Paul Louis Maria Joseph VAN NEER, Hamed SADEGHIAN MARNANI, Maarten Hubertus VAN ES
  • Publication number: 20200233013
    Abstract: The present document relates to a Z-position motion stage for use in a scanning probe microscopy system. The stage comprises a support element for mounting the z-position motion stage on a scan head, and at least one first actuator mounted on the support element for enabling motion of a probe of the scanning probe microscopy system. The probe is connected to or attachable to the z-position motion stage. The support element and the at least one first actuator are shaped and mounted such as to form a rotation symmetric element which is rotation symmetric around a notional common longitudinal axis. The document further relates to a scan head, a method of manufacturing a z-position motion stage, and a Z-position motion stage obtained with such a method.
    Type: Application
    Filed: October 2, 2018
    Publication date: July 23, 2020
    Inventors: Albert Dekker, Martinus Cornelius Johannes Maria van Riel, Aukje Arianne Annette Kastelijn
  • Publication number: 20200116754
    Abstract: The present document relates to a scanning probe microscopy system and method for mapping nanostructures on the surface of a sample. The system comprises a sample support structure, a scan head including a probe comprising a cantilever and a probe tip, and an actuator for scanning the probe tip relative to the sample surface. The system also includes an optical source, and a sensor unit for obtaining a sensor signal indicative of a position of the probe tip. The sensor unit includes a partially reflecting element for reflecting a reference fraction and for transmitting a sensing fraction of the optical signal. It further includes directional optics for directing the sensing fraction as an optical beam towards the probe tip, and for receiving a reflected fraction thereof to provide a sensed signal. Moreover the sensor includes an interferometer for providing one or more output signals, and signal conveyance optics for conveying the sensed signal and the reference signal to the interferometer.
    Type: Application
    Filed: May 14, 2018
    Publication date: April 16, 2020
    Inventors: Hamed Sadeghian Marnani, Aukje Arianne Annette Kastelijn, Peter Martijn Toet, Geerten Frans Ijsbrand Kramer, Evert Nieuwkoop, Albert Dekker, Martinus Cornelius Johannes Maria van Riel, Rik Kruidhof