Patents by Inventor Marty Alan Lail

Marty Alan Lail has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11779905
    Abstract: The present invention relates to catalyst compositions containing a mixed oxide catalyst of formula (I) or formula (II) as described herein, their preparation, and their use in a process for ammoxidation of various organic compounds to their corresponding nitriles and to the selective catalytic oxidation of excess NH3 present in effluent gas streams to N2 and/or NOx.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: October 10, 2023
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Yawu T. Chi, Scott G. Moffatt, Mikhail Khramov, Ranjeeth Reddy Kalluri, Bruce F. Monzyk, Soundar Ramchandran, Marty Alan Lail, Maruthi Sreekanth Pavani
  • Publication number: 20210146339
    Abstract: The present invention relates to catalyst compositions containing a mixed oxide catalyst of formula (I) or formula (II) as described herein, their preparation, and their use in a process for ammoxidation of various organic compounds to their corresponding nitriles and to the selective catalytic oxidation of excess NH3 present in effluent gas streams to N2 and/or NOx.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 20, 2021
    Applicant: Ascend Performance Materials Operations LLC
    Inventors: Yawu T. CHI, Scott G. MOFFATT, Mikhail KHRAMOV, Ranjeeth Reddy KALLURI, Bruce F. MONZYK, Soundar RAMCHANDRAN, Marty Alan LAIL, Maruthi Sreekanth PAVANI
  • Patent number: 10265677
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: April 23, 2019
    Assignee: Research Triangle Institute
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Publication number: 20190009252
    Abstract: The present invention relates to catalyst compositions containing a mixed oxide catalyst of formula (I) or formula (II) as described herein, their preparation, and their use in a process for ammoxidation of various organic compounds to their corresponding nitriles and to the selective catalytic oxidation of excess NH3 present in effluent gas streams to N2 and/or NOx.
    Type: Application
    Filed: January 9, 2017
    Publication date: January 10, 2019
    Applicant: Ascend Performance Materials Operations LLC
    Inventors: Yawu T. Chi, Scott G. Moffatt, Mikhail Khramov, Ranjeeth Reddy Kalluri, Bruce F. Monzyk, Soundar Ramchandran, Marty Alan Lail, Maruthi Sreekanth Pavani
  • Publication number: 20180043328
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Application
    Filed: October 19, 2017
    Publication date: February 15, 2018
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Patent number: 9808783
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 7, 2017
    Assignee: Research Triangle Institute
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Publication number: 20150190777
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Application
    Filed: July 19, 2013
    Publication date: July 9, 2015
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Patent number: 8691171
    Abstract: A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 8, 2014
    Assignees: BASF SE, Research Triangle Institute
    Inventors: Torsten Katz, Christian Riemann, Karsten Bartling, Sean Taylor Rigby, Luke James Ivor Coleman, Marty Alan Lail
  • Publication number: 20130259789
    Abstract: A process for removing sulphur oxides from a fluid stream, such as flue gas, that comprises a) providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the non-aqueous absorption liquid being incompletely miscible with water: b) treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex: c) causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; d) separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.
    Type: Application
    Filed: March 1, 2013
    Publication date: October 3, 2013
    Applicants: Research Triangle Institute, BASF SE
    Inventors: Torsten Katz, Christian Riemann, Karsten Bartling, Sean Taylor Rigby, Luke James Ivor Coleman, Marty Alan Lail