Patents by Inventor Martyn N. Easton

Martyn N. Easton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8718478
    Abstract: A radio-over-fiber (RoF) hybrid wired/wireless transponder is disclosed that is configured to provide both wireless and wired communication between a hybrid head-end and one or more client devices. The hybrid transponder includes optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion capability and is configured to frequency multiplex/demultiplex electrical “wired” signals and electrical “wireless” signals. The electrical wireless signals are wirelessly communicated to the client device(s) via a multiple-input/multiple-output (MIMO) antenna system within a cellular coverage area. The electrical wired signals are communicated to the client device(s) via a wireline cable that plugs into a wireline cable port on the transponder. The hybrid RoF system includes a hybrid head-end capable of transmitting and receiving wired and wireless optical signals, and an optical fiber cable that is optically coupled to the hybrid head-end and to at least one hybrid transponder.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: May 6, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Dean Michael Thelen, Jacob George, Luis Alberto Zenteno, Michael Sauer, Martyn N. Easton
  • Patent number: 8600205
    Abstract: An optical system that allows for the flexible location of an optical device that is coupled to a patch panel in a wiring closet or other optical signal source through a series of fiber optic cables and optical connections, or the flexible location of an array of such optical devices. Array cables have optical and electrical conductors to provide electrical power as well as optical data in optical systems.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 3, 2013
    Assignee: Corning Cable Systems
    Inventors: William C. Hurley, Martyn N. Easton, Michael Sauer, David A. Seddon
  • Patent number: 8472767
    Abstract: A fiber optic cable includes at least one optical fiber and two electrical conductors. A mid-span connection point in the fiber optic cable has a configuration for attaching an opto-electronic component to the optical fiber and electrical conductors. At least one RF antenna is also included and is electrically connected to the opto-electronic component. A fiber optic cable assembly includes a plurality of optical fibers and at least two electrical conductors. An opto-electrical transceiver is in optical and electrical communication with the optical fibers and electrical conductors. An RF antenna is also in electrical communication with the opto-electrical transceiver.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: June 25, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Martyn N. Easton, James G. Renfro, Jr., Michael Sauer
  • Publication number: 20120288245
    Abstract: An optical system that allows for the flexible location of an optical device that is coupled to a patch panel in a wiring closet or other optical signal source through a series of fiber optic cables and optical connections, or the flexible location of an array of such optical devices. Array cables have optical and electrical conductors to provide electrical power as well as optical data in optical systems.
    Type: Application
    Filed: May 31, 2011
    Publication date: November 15, 2012
    Inventors: William C. Hurley, Martyn N. Easton, Michael Sauer, David A. Seddon
  • Publication number: 20120195329
    Abstract: A radio-over-fiber (RoF) hybrid wired/wireless transponder is disclosed that is configured to provide both wireless and wired communication between a hybrid head-end and one or more client devices. The hybrid transponder includes optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion capability and is configured to frequency multiplex/demultiplex electrical “wired” signals and electrical “wireless” signals. The electrical wireless signals are wirelessly communicated to the client device(s) via a multiple-input/multiple-output (MIMO) antenna system within a cellular coverage area. The electrical wired signals are communicated to the client device(s) via a wireline cable that plugs into a wireline cable port on the transponder. The hybrid RoF system includes a hybrid head-end capable of transmitting and receiving wired and wireless optical signals, and an optical fiber cable that is optically coupled to the hybrid head-end and to at least one hybrid transponder.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 2, 2012
    Inventors: Dean Michael Thelen, Jacob George, Luis Alberto Zenteno, Michael Sauer, Martyn N. Easton
  • Patent number: 8175459
    Abstract: A radio-over-fiber (RoF) hybrid wired/wireless transponder is disclosed that is configured to provide both wireless and wired communication between a hybrid head-end and one or more client devices. The hybrid transponder includes optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion capability and is configured to frequency multiplex/demultiplex electrical “wired” signals and electrical “wireless” signals. The electrical wireless signals are wirelessly communicated to the client device(s) via a multiple-input/multiple-output (MIMO) antenna system within a cellular coverage area. The electrical wired signals are communicated to the client device(s) via a wireline cable that plugs into a wireline cable port on the transponder. The hybrid RoF system includes a hybrid head-end capable of transmitting and receiving wired and wireless optical signals, and an optical fiber cable that is optically coupled to the hybrid head-end and to at least one hybrid transponder.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: May 8, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Dean Michael Thelen, Jacob George, Luis Alberto Zenteno, Michael Sauer, Martyn N. Easton
  • Patent number: 7848654
    Abstract: A radio-over-fiber (RoF) wireless picocellular system adapted to form an array of substantially non-overlapping individual picocells by operating adjacent picocells at different frequencies is operated to form one or more combined picocells. The combined picocells are formed from two or more neighboring picocells by the central head-end station operating neighboring picocells at a common frequency. Communication between the central head-end station and a client device residing within a combined picocell is enhanced by the availability of two or more transponder antenna systems. Thus, enhanced communication techniques such as antenna diversity, phased-array antenna networks and multiple-input/multiple-output (MIMO) methods can be implemented to provide the system with enhanced performance capability. These techniques are preferably implemented at the central head-end station to avoid having to make substantial changes to the wireless picocellular system infrastructure.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 7, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Michael Sauer, Richard S. Vodhanel, Martyn N. Easton, Aravind Chamarti, Jack Winters
  • Publication number: 20090097855
    Abstract: A radio-over-fiber (RoF) hybrid wired/wireless transponder is disclosed that is configured to provide both wireless and wired communication between a hybrid head-end and one or more client devices. The hybrid transponder includes optical-to-electrical (O/E) and electrical-to-optical (E/O) conversion capability and is configured to frequency multiplex/demultiplex electrical “wired” signals and electrical “wireless” signals. The electrical wireless signals are wirelessly communicated to the client device(s) via a multiple-input/multiple-output (MIMO) antenna system within a cellular coverage area. The electrical wired signals are communicated to the client device(s) via a wireline cable that plugs into a wireline cable port on the transponder. The hybrid RoF system includes a hybrid head-end capable of transmitting and receiving wired and wireless optical signals, and an optical fiber cable that is optically coupled to the hybrid head-end and to at least one hybrid transponder.
    Type: Application
    Filed: October 12, 2007
    Publication date: April 16, 2009
    Inventors: Dean Michael Thelen, Jacob George, Luis Alberto Zenteno, Michael Sauer, Martyn N. Easton
  • Patent number: 7495560
    Abstract: The wireless radio-frequency identification (RFID) picocellular system includes a central control station optically coupled to one or more electrical-optical (E-O) access point devices that generate the individual picocells. The central control station includes service units that provide conventional wireless cellular services, and further includes one or more RFID reader units. The E-O access point devices are adapted to receive electromagnetic RFID tag signals from RFID tags within the associated picocell and transmit optical RFID tag signals to the central control station, which converts the optical RFID tag signals to electrical RFID tag signals, which are then received by the one or more RFID reader units. The system allows for large numbers of RFID tags in the picocellular coverage area to be quickly read and the information stored.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: February 24, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Martyn N. Easton, Michael Sauer, Richard S. Vodhanel
  • Publication number: 20080080863
    Abstract: A radio-over-fiber (RoF) wireless picocellular system adapted to form an array of substantially non-overlapping individual picocells by operating adjacent picocells at different frequencies is operated to form one or more combined picocells. The combined picocells are formed from two or more neighboring picocells by the central head-end station operating neighboring picocells at a common frequency. Communication between the central head-end station and a client device residing within a combined picocell is enhanced by the availability of two or more transponder antenna systems. Thus, enhanced communication techniques such as antenna diversity, phased-array antenna networks and multiple-input/multiple-output (MIMO) methods can be implemented to provide the system with enhanced performance capability. These techniques are preferably implemented at the central head-end station to avoid having to make substantial changes to the wireless picocellular system infrastructure.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 3, 2008
    Inventors: Michael Sauer, Richard S. Vodhanel, Martyn N. Easton, Aravind Chamarti, Jack Winters
  • Publication number: 20070286599
    Abstract: The centralized optical-fiber-based wireless picocellular system includes one or more service units at a central head-end station. The one or more service units are optically coupled to one or more transponders via respective one or more optical fiber RF communication links. The transponders are each adapted to provide within the associated picocell electromagnetic RF service signals from different service units, and receive electromagnetic RF service signals from any client device within the picocell. The service signal from the particular client device is sent over the optical fiber RF communication link back to one or more service units. The transponders are arranged along the length of one or more optical fiber cables, which can be distributed throughout a building infrastructure. This creates a picocellular coverage area that provides a number of different wireless services relative to the building infrastructure.
    Type: Application
    Filed: June 12, 2006
    Publication date: December 13, 2007
    Inventors: Michael Sauer, Martyn N. Easton
  • Publication number: 20070285239
    Abstract: The optical-fiber-based radio-frequency identification (RFID) system includes one or multiple RFID readers optically coupled to one or more transponders via respective one or more optical fiber RF communication links. The transponders are each adapted to receive electromagnetic RF tag signals from RFID tags within the associated picocell and transmit optical RF tag signals to the corresponding RFID reader over the corresponding optical fiber RF communication link. The RFID reader then converts the optical RF tag signals to electrical RFID tag signals, and extracts the RFID tag information from the RFID tag signals. The transponders can be arranged spaced apart along the length of one or more optical fiber cables made up of pairs of downlink and uplink optical fibers that constitute the optical fiber RF communication links.
    Type: Application
    Filed: June 12, 2006
    Publication date: December 13, 2007
    Inventors: Martyn N. Easton, Michael Sauer
  • Patent number: 7231119
    Abstract: A tube assembly of the present invention has at least one subunit with at least one dry insert generally surrounding the subunit which may be disposed within a tube, thereby forming a tube assembly. The subunit includes a fiber optic ribbon and a sheath, wherein the sheath is tight-buffered about the fiber optic ribbon, thereby inhibiting buckling of the ribbon during temperature variations. Additionally, the tube assembly can be a portion of a fiber optic cable having a sheath that may include a plurality of strength members and a cable jacket. In other embodiments, the subunits and dry insert are disposed within a cavity, thereby forming a tubeless cable. Additionally, subunits may include a marking indicia for denoting the security level.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: June 12, 2007
    Assignee: Corning Cable Systems, LLC.
    Inventors: Brian K. Rhoney, Samuel D. Nave, Todd R. Rhyne, Scott M. Torrey, Martyn N. Easton, David C. Hall, Alan T. Parsons, Jody L. Greenwood, Kenneth D. Temple, Jr., Jason C. Lail
  • Patent number: 7113680
    Abstract: A fiber optic cable includes at least one at least one bundle having a plurality of non-tight buffered optical fibers and a binder element for maintaining the integrity of the bundle. The binder element may be, for example, a binder thread. The fiber optic cable may exclude a grease or a grease-like composition being in contact with the at least one bundle for filling interstices of the cable thereby blocking water from flowing through the cable. The fiber optic cable also includes a separation layer for inhibiting adhesion between the bundles of optical fibers and the cable jacket. In another embodiment, a fiber optic cable includes a plurality of optical fibers and a binder element forming at least one bundle. The at least one bundle is surrounded by an armor layer and the fiber optic cable excludes a cable jacket within the armor layer.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: September 26, 2006
    Assignee: Corning Cable Systems, LLC
    Inventors: William C. Hurley, Martyn N. Easton
  • Patent number: 7054531
    Abstract: A unitized fiber optic cable 10 includes a plurality of unit cables 20, each of which also includes a plurality of tight buffered optical fibers 30. The unit cables 20 aid in segregating and identifying individual tight buffered optical fibers 30. Strength members, such as aramid fibers 14 can be located between the unit cables 20 and the outer cable jacket 12, instead of being located within the unit cables 20. Relatively thin unit jackets 22 can be made of a material that will not stick to the tight buffer or tight buffer layers 32 on the optical fibers 30, so aramid fibers 14 need not be located between the unit jacket 22 and the tight buffered optical fibers 30. The unit jacket 22 can be a highly filled polymer that can be the same polymer used in the tight buffer or tight buffer layer 32. The unit jacket 22 need not be a load bearing member.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: May 30, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: William C. Hurley, Martyn N. Easton
  • Patent number: 7035511
    Abstract: A robust protective casing is provided that includes an inner tubing having a passageway therethrough, an outer tubing, and a plurality of flexible strength members disposed between the inner and outer tubing. The protective casing has a wall tubing thickness ratio of the inner tubing wall thickness to the outer tubing wall thickness of about 0.5 or less while still inhibiting the kinking of the protective casing during relatively small bend radii. Additionally, an outer diameter of the protective casing is relatively small while still allowing the routing of a standard sized 900 micron tight-buffered optical fiber through the passageway. Thus, the protective casing is advantageous in applications where limited space is available space. A fan-out assembly using the protective casings is also described.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: April 25, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Brian K. Rhoney, H. Edward Hudson, II, Martyn N. Easton
  • Patent number: 6901191
    Abstract: A fiber optic cable includes at least one at least one bundle having a plurality of non-tight buffered optical fibers and a binder element for maintaining the integrity of the bundle. The binder element may be, for example, a binder thread. The fiber optic cable may exclude a grease or a grease-like composition being in contact with the at least one bundle for filling interstices of the cable thereby blocking water from flowing through the cable. The fiber optic cable also includes a separation layer for inhibiting adhesion between the bundles of optical fibers and the cable jacket. In another embodiment, a fiber optic cable includes a plurality of optical fibers and a binder element forming at least one bundle. The at least one bundle is surrounded by an armor layer and the fiber optic cable excludes a cable jacket within the armor layer.
    Type: Grant
    Filed: November 12, 2001
    Date of Patent: May 31, 2005
    Assignee: Corning Cable Systems LLC
    Inventors: William C. Hurley, Martyn N. Easton
  • Publication number: 20040240808
    Abstract: A tube assembly of the present invention has at least one subunit with at least one dry insert generally surrounding the subunit which may be disposed within a tube, thereby forming a tube assembly. The subunit includes a fiber optic ribbon and a sheath, wherein the sheath is tight-buffered about the fiber optic ribbon, thereby inhibiting buckling of the ribbon during temperature variations. Additionally, the tube assembly can be a portion of a fiber optic cable having a sheath that may include a plurality of strength members and a cable jacket. In other embodiments, the subunits and dry insert are disposed within a cavity, thereby forming a tubeless cable. Additionally, subunits may include a marking indicia for denoting the security level.
    Type: Application
    Filed: July 6, 2004
    Publication date: December 2, 2004
    Inventors: Brian K. Rhoney, Samuel D. Nave, Todd R. Rhyne, Scott M. Torrey, Martyn N. Easton, David C. Hall, Alan T. Parsons, Jody L. Greenwood, Kenneth D. Temple, Jason C. Lail
  • Publication number: 20040120665
    Abstract: A unitized fiber optic cable 10 includes a plurality of unit cables 20, each of which also includes a plurality of tight buffered optical fibers 30. The unit cables 20 aid in segregating and identifying individual tight buffered optical fibers 30. Strength members, such as aramid fibers 14 can be located between the unit cables 20 and the outer cable jacket 12, instead of being located within the unit cables 20. Relatively thin unit jackets 22 can be made of a material that will not stick to the tight buffer or tight buffer layers 32 on the optical fibers 30, so aramid fibers 14 need not be located between the unit jacket 22 and the tight buffered optical fibers 30. The unit jacket 22 can be a highly filled polymer that can be the same polymer used in the tight buffer or tight buffer layer 32. The unit jacket 22 need not be a load bearing member.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: William C. Hurley, Martyn N. Easton
  • Publication number: 20030091307
    Abstract: A fiber optic cable includes at least one at least one bundle having a plurality of non-tight buffered optical fibers and a binder element for maintaining the integrity of the bundle. The binder element may be, for example, a binder thread. The fiber optic cable may exclude a grease or a grease-like composition being in contact with the at least one bundle for filling interstices of the cable thereby blocking water from flowing through the cable. The fiber optic cable also includes a separation layer for inhibiting adhesion between the bundles of optical fibers and the cable jacket. In another embodiment, a fiber optic cable includes a plurality of optical fibers and a binder element forming at least one bundle. The at least one bundle is surrounded by an armor layer and the fiber optic cable excludes a cable jacket within the armor layer.
    Type: Application
    Filed: November 12, 2001
    Publication date: May 15, 2003
    Inventors: William C. Hurley, Martyn N. Easton