Patents by Inventor Marvin R. Young

Marvin R. Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8750713
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Pivotal Decisions LLC
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Publication number: 20120155882
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 21, 2012
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 8155519
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 10, 2012
    Assignee: Pivotal Decisions LLC
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7840139
    Abstract: The invention pertains to optical fiber transmission systems, and is particularly relevant to optical transport systems employing optical amplifiers. In particular the invention teaches an apparatus and method that allows cost effective co-directional operation of an optical amplifier to support full duplex traffic on a single fiber, and the design of an optical fiber transmission system based on this optical amplifier technology.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: November 23, 2010
    Inventors: Michael H. Eiselt, Lara Garrett, Marvin R. Young
  • Publication number: 20100241913
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Application
    Filed: April 21, 2010
    Publication date: September 23, 2010
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7796886
    Abstract: Optical signals generated from customer premise equipment (CPE) at the edges of the metro domain networks are facilitated. The CPEs connect to extension terminals that transform the optical signal originating at the CPE into a format for long haul transmission. The optical signal then propagates to a primary terminal where the signal is multiplexed with other optical signals from other extension terminals. The multiplexed signals are then transmitted to a second primary terminal. The signal is then demultiplexed from other optical signals and transmitted to the proper extension terminal. At the extension terminal, the demultiplexed optical signal is transformed from its LH format back into a format suitable for inter-connection to a CPE. The signal undergoes optical-to-electrical conversion only at the extension terminals or end points, which can be located at lessee's facility. The only equipment located in lessor's facility is the primary terminal containing line amplifiers and add/drop nodes.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: September 14, 2010
    Inventors: Pawan Jaggi, Marvin R. Young, William David Bragg
  • Patent number: 7729617
    Abstract: The invention is relevant to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the invention teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: June 1, 2010
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7697802
    Abstract: This invention pertains to optical fiber transmission networks, and is particularly relevant to transmission of high volume of data and voice traffic among different locations. In particular, the improvement teaches improvements to an optical transport system to allow for efficient and flexible network evolution.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 13, 2010
    Inventor: Marvin R. Young
  • Publication number: 20090129774
    Abstract: Optical signals generated from customer premise equipment (CPE) at the edges of the metro domain networks are facilitated. The CPEs connect to extension terminals that transform the optical signal originating at the CPE into a format for long haul transmission. The optical signal then propagates to a primary terminal where the signal is multiplexed with other optical signals from other extension terminals. The multiplexed signals are then transmitted to a second primary terminal. The signal is then demultiplexed from other optical signals and transmitted to the proper extension terminal. At the extension terminal, the demultiplexed optical signal is transformed from its LH format back into a format suitable for inter-connection to a CPE. The signal undergoes optical-to-electrical conversion only at the extension terminals or end points, which can be located at lessee's facility. The only equipment located in lessor's facility is the primary terminal containing line amplifiers and add/drop nodes.
    Type: Application
    Filed: January 26, 2009
    Publication date: May 21, 2009
    Applicant: PIVOTAL DECISIONS, LLC
    Inventors: Pawan Jaggi, Marvin R. Young, William David Bragg
  • Patent number: 7505687
    Abstract: The invention facilitates optical signals generated from customer premise equipment (CPE) at the edges of the metro domain networks. The CPEs are connected to extension terminals that transform the optical signal originating at the CPE into a suitable format for long haul transmission. The optical signal then propagates to a primary terminal where the signal is multiplexed with other optical signals from other extension terminals. The multiplexed signals are then transmitted over LH or ULH network to a second primary terminal where the signal is then demultiplexed from other optical signals and transmited to the proper extension terminal. At the extension terminal, the demultiplexed optical signal is transformed from its LH format back into a format suitable for inter-connection to a CPE. Using this architecture, the signal under goes optical-to-electrical conversion only at the extension terminals or end points. These end points can be located in lessee's facility.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: March 17, 2009
    Assignee: Pivotal Decisions LLC
    Inventors: Pawan Jaggi, Marvin R. Young, William David Bragg
  • Patent number: 7502562
    Abstract: The invention facilitates optical signals generated from customer premise equipment (CPE) at the edges of the metro domain networks. The CPEs are connected to extension terminals that transform the optical signal originating at the CPE into a suitable format for long haul transmission. The optical signal then propagates to a primary terminal where the signal is multiplexed with other optical signals from other extension terminals. The multiplexed signals are then transmitted over LH or ULH network to a second primary terminal where the signal is then demultiplexed from other optical signals and transmited to the proper extension terminal. At the extension terminal, the demultiplexed optical signal is transformed from its LH format back into a format suitable for inter-connection to a CPE. Using this architecture, the signal under goes optical-to-electrical conversion only at the extension terminals or end points. These end points can be located in lessee's facility.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: March 10, 2009
    Assignee: Pivotal Decisions LLC
    Inventors: Pawan Jaggi, Marvin R. Young, William David Bragg
  • Publication number: 20090047012
    Abstract: This invention pertains to optical fiber transmission networks, and is particularly relevant to transmission of high volume of data and voice traffic among different locations. In particular, the improvement teaches improvements to an optical transport system to allow for efficient and flexible network evolution.
    Type: Application
    Filed: June 6, 2008
    Publication date: February 19, 2009
    Applicant: PIVOTAL DECISIONS LLC
    Inventor: Marvin R. Young
  • Patent number: 7471858
    Abstract: The invention pertains to optical fiber transmission systems, and is particularly relevant to transmission of large volumes of data over long distances at high rates. An improved apparatus achieving precise dispersion compensation in a fiber span is disclosed. In particular, the invention teaches a configurable dispersion compensation trimmer with automatic detection of configuration.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: December 30, 2008
    Assignee: Pivotal Decisions LLC
    Inventors: Bo Guo, Marvin R. Young, Michael H. Eiselt
  • Patent number: 7460745
    Abstract: The invention pertains to optical fiber transmission systems, and is particularly relevant to transmission of large volumes of data over long distances at high rates. An improved apparatus achieving precise dispersion compensation in a fiber span is disclosed. In particular, the invention teaches a configurable dispersion compensation trimmer with automatic detection of configuration.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: December 2, 2008
    Assignee: Pivotal Decisions LLC
    Inventors: Bo Guo, Marvin R. Young, Michael H. Eiselt
  • Publication number: 20080285982
    Abstract: The invention pertains to optical fiber transmission systems, and is particularly relevant to optical transport systems employing optical amplifiers. In particular the invention teaches an apparatus and method that allows cost effective co-directional operation of an optical amplifier to support full duplex traffic on a single fiber, and the design of an optical fiber transmission system based on this optical amplifier technology.
    Type: Application
    Filed: July 31, 2008
    Publication date: November 20, 2008
    Applicant: PIVOTAL DECISIONS LLC
    Inventors: Michael H. Eiselt, Lara Garrett, Marvin R. Young
  • Patent number: 7433572
    Abstract: This invention pertains to optical fiber transmission networks, and is particularly relevant to transmission of high volume of data and voice traffic among different locations. In particular, the improvement teaches improvements to an optical transport system to allow for efficient and flexible network evolution.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: October 7, 2008
    Assignee: Pivotal Decisions LLC
    Inventor: Marvin R. Young
  • Patent number: 7421207
    Abstract: The invention pertains to optical fiber transmission systems, and is particularly relevant to optical transport systems employing optical amplifiers. In particular the invention teaches an apparatus and method that allows cost effective co-directional operation of an optical amplifier to support full duplex traffic on a single fiber, and the design of an optical fiber transmission system based on this optical amplifier technology.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: September 2, 2008
    Assignee: Pivotal Decisions LLC
    Inventors: Michael H. Eiselt, Lara Garrett, Marvin R. Young
  • Patent number: RE43403
    Abstract: The invention facilitates optical signals generated from customer premise equipment (CPE) at the edges of the metro domain networks. The CPEs are connected to extension terminals that transform the optical signal originating at the CPE into a suitable format for long haul transmission. The optical signal then propagates to a primary terminal where the signal is multiplexed with other optical signals from other extension terminals. The multiplexed signals are then transmitted over LH or ULH network to a second primary terminal where the signal is then demultiplexed from other optical signals and transmited to the proper extension terminal. At the extension terminal, the demultiplexed optical signal is transformed from its LH format back into a format suitable for inter-connection to a CPE. Using this architecture, the signal under goes optical-to-electrical conversion only at the extension terminals or end points. These end points can be located in lessee's facility.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 22, 2012
    Assignee: Pivotal Decisions LLC
    Inventors: Pawan P. Jaggi, Marvin R. Young, William David Bragg
  • Patent number: RE44015
    Abstract: The invention facilitates optical signals generated from customer premise equipment (CPE) at the edges of the metro domain networks. The CPEs are connected to extension terminals that transform the optical signal originating at the CPE into a suitable format for long haul transmission. The optical signal then propagates to a primary terminal where the signal is multiplexed with other optical signals from other extension terminals. The multiplexed signals are then transmitted over LH or ULH network to a second primary terminal where the signal is then demultiplexed from other optical signals and transmited to the proper extension terminal. At the extension terminal, the demultiplexed optical signal is transformed from its LH format back into a format suitable for interconnection to a CPE. Using this architecture, the signal under goes optical-to-electrical conversion only at the extension terminals or end points. These end points can be located in lessee's facility.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: February 19, 2013
    Assignee: Pivotal Decisions LLC
    Inventors: Pawan P. Jaggi, Marvin R. Young, William David Bragg
  • Patent number: RE45104
    Abstract: The invention facilitates optical signals generated from customer premise equipment (CPE) at the edges of the metro domain networks. The CPEs are connected to extension terminals that transform the optical signal originating at the CPE into a suitable format for long haul transmission. The optical signal then propagates to a primary terminal where the signal is multiplexed with other optical signals from other extension terminals. The multiplexed signals are then transmitted over LH or ULH network to a second primary terminal where the signal is then demultiplexed from other optical signals and transmited to the proper extension terminal. At the extension terminal, the demultiplexed optical signal is transformed from its LH format back into a format suitable for interconnection to a CPE. Using this architecture, the signal under goes optical-to-electrical conversion only at the extension terminals or end points. These end points can be located in lessee's facility.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: September 2, 2014
    Assignee: Pivotal Decisions LLC
    Inventors: Pawan P. Jaggi, Marvin R. Young, William David Bragg