Patents by Inventor Mary Dell

Mary Dell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898149
    Abstract: The present invention relates to methods and compositions for modifying a target site in the genome of a plant cell. Such modifications include integration of a transgene and mutations. The present invention also relates to methods and compositions for identifying and enriching for cells which comprise a modified target site.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: February 13, 2024
    Assignee: Syngenta Participations AG
    Inventors: Zhongying Chen, Myoung Kim, Mary-Dell Chilton, Heng Zhong, Weining Gu, Yaping Jiang, Qiudeng Que
  • Publication number: 20230265446
    Abstract: The present invention relates to methods and compositions for modifying a target site in the genome of a plant cell. Such modifications include integration of a transgene and mutations. The present invention also relates to methods and compositions for identifying and enriching for cells which comprise a modified target site.
    Type: Application
    Filed: March 10, 2023
    Publication date: August 24, 2023
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Zhongying Chen, Myoung Kim, Mary-Dell Chilton, Heng Zhong, Weining Gu, Yaping Jiang, Qiudeng Que
  • Patent number: 11643664
    Abstract: The present invention relates to methods and compositions for modifying a target site in the genome of a plant cell. Such modifications include integration of a transgene and mutations. The present invention also relates to methods and compositions for identifying and enriching for cells which comprise a modified target site.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: May 9, 2023
    Assignee: Syngenta Participations AG
    Inventors: Zhongying Chen, Myoung Kim, Mary-Dell Chilton, Heng Zhong, Weining Gu, Yaping Jiang, Qiudeng Que
  • Publication number: 20230130592
    Abstract: The invention provides three novel disarmed strains of Agrobacteriumtumefaciens bacteria useful for the transformation of plants. The invention provides three engineered A. tumefaciens Chry5 strains or bacterial cells thereof which comprise the Chry5 strain chromosomal background and a disarmed pTiChry5 vector, and methods of using said bacterial strains or cells for transformation of fungal or plant cells, in particular dicot or monocot plant cells, including soybean, maize, wheat, and sugarcane cells. The invention further relates to the transgenic plants created by these methods.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 27, 2023
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Zhongying Chen, Qiudeng Que, Mark Scott Rose, Heng Zhong, Mary-Dell Chilton, Eric Levy, Yingping Lucy Qin
  • Publication number: 20230114951
    Abstract: The present invention relates to methods and compositions for targeted insertion of polynucleotide molecules into ideal target sites in the genome of a maize plant. The present invention relates to maize recombinant molecules comprising heterologous sequences and also to methods of integrating a DNA of interest into a target maize genomic locus in a maize genome. The present invention also relates to regenerated maize plants or plant parts comprising the recombinant molecules and/or a DNA of interest.
    Type: Application
    Filed: August 26, 2022
    Publication date: April 13, 2023
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Yinping Lucy Qin, Mark Rose, Zhongying Chen, Heng Zhong, Weining Gu, Wenling Wang, Qiudeng Que, Ailing Zhou, Mary-Dell Chilton
  • Patent number: 11505801
    Abstract: The invention provides three novel disarmed strains of Agrobacterium tumefaciens bacteria useful for the transformation of plants. The invention provides three engineered A. tumefaciens Chry5 strains or bacterial cells thereof which comprise the Chry5 strain chromosomal background and a disarmed pTiChry5 vector, and methods of using said bacterial strains or cells for transformation of fungal or plant cells, in particular dicot or monocot plant cells, including soybean, maize, wheat, and sugarcane cells. The invention further relates to the transgenic plants created by these methods.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 22, 2022
    Assignee: Syngenta Participations AG
    Inventors: Zhongying Chen, Qiudeng Que, Mark Scott Rose, Heng Zhong, Mary-Dell Chilton, Eric Levy, Yingping Lucy Qin
  • Patent number: 11459577
    Abstract: The present invention relates to methods and compositions for targeted insertion of polynucleotide molecules into ideal target sites in the genome of a maize plant. The present invention relates to maize recombinant molecules comprising heterologous sequences and also to methods of integrating a DNA of interest into a target maize genomic locus in a maize genome. The present invention also relates to regenerated maize plants or plant parts comprising the recombinant molecules and/or a DNA of interest.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: October 4, 2022
    Assignee: Syngenta Participations AG
    Inventors: Yinping Lucy Qin, Mark Rose, Zhongying Chen, Heng Zhong, Weining Gu, Wenling Wang, Qiudeng Que, Ailing Zhou, Mary-Dell Chilton
  • Publication number: 20210214736
    Abstract: The present invention relates to methods and compositions for modifying a target site in the genome of a plant cell. Such modifications include integration of a transgene and mutations. The present invention also relates to methods and compositions for identifying and enriching for cells which comprise a modified target site.
    Type: Application
    Filed: February 17, 2021
    Publication date: July 15, 2021
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Zhongying Chen, Myoung Kim, Mary-Dell Chilton, Heng Zhong, Weining Gu, Yaping Jiang, Qiudeng Que
  • Publication number: 20210189409
    Abstract: The present invention relates to methods and compositions for targeted insertion of polynucleotide molecules into ideal target sites in the genome of a maize plant. The present invention relates to maize recombinant molecules comprising heterologous sequences and also to methods of integrating a DNA of interest into a target maize genomic locus in a maize genome. The present invention also relates to regenerated maize plants or plant parts comprising the recombinant molecules and/or a DNA of interest.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 24, 2021
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Yinping Lucy Qin, Mark Rose, Zhongying Chen, Heng Zhong, Weining Gu, Wenling Wang, Qiudeng Que, Ailing Zhou, Mary-Dell Chilton
  • Publication number: 20210087557
    Abstract: The present invention relates to methods and compositions for chimeric RNA comprising a guide RNA and bait RNA for modifying a target site in the genome of a cell. Such modifications include integration of a transgene and allelic mutations and modifications of native genes. Also provided are plants comprising a modified nucleic acid sequence compared to the native gene integrated into a targeted genomic site in the plant genome.
    Type: Application
    Filed: July 26, 2018
    Publication date: March 25, 2021
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Zhongying Chen, Mary-Dell Chilton, Shujie Dong, Qiudeng Que, Heng Zhong
  • Publication number: 20200208162
    Abstract: The invention provides three novel disarmed strains of Agrobacterium tumefaciens bacteria useful for the transformation of plants. The invention provides three engineered A. tumefaciens Chry5 strains or bacterial cells thereof which comprise the Chry5 strain chromosomal background and a disarmed pTiChry5 vector, and methods of using said bacterial strains or cells for transformation of fungal or plant cells, in particular dicot or monocot plant cells, including soybean, maize, wheat, and sugarcane cells. The invention further relates to the transgenic plants created by these methods.
    Type: Application
    Filed: July 26, 2018
    Publication date: July 2, 2020
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Zhongying Chen, Qiudeng Que, Mark Scott Rose, Heng Zhong, Mary-Dell Chilton, Eric Levy, Yingping Lucy Qin
  • Publication number: 20180291386
    Abstract: The present invention relates to methods and compositions for modifying a target site in the genome of a plant cell. Such modifications include integration of a transgene and mutations. The present invention also relates to methods and compositions for identifying and enriching for cells which comprise a modified target site.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 11, 2018
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Zhongying Chen, Myoung Kim, Mary-Dell Chilton, Heng Zhong, Weining Gu, Yaping Jiang, Qiudeng Que
  • Patent number: 9963710
    Abstract: The present invention relates to methods and compositions for modifying a target site in the genome of a plant cell. Such modifications include integration of a transgene and mutations. The present invention also relates to methods and compositions for identifying and enriching for cells which comprise a modified target site.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 8, 2018
    Assignee: Syngenta Participations AG
    Inventors: Zhongying Chen, Myoung Kim, Mary-Dell Chilton, Heng Zhong, Weining Gu, Yaping Jiang, Qiudeng Que
  • Publication number: 20170016010
    Abstract: The present invention relates to methods and compositions for modifying a target site in the genome of a plant cell. Such modifications include integration of a transgene and mutations. The present invention also relates to methods and compositions for identifying and enriching for cells which comprise a modified target site.
    Type: Application
    Filed: December 18, 2015
    Publication date: January 19, 2017
    Applicant: SYNGENTA PARTICIPATIONS AG
    Inventors: Zhongying Chen, Myoung Kim, Mary-Dell Chilton, Heng Zhong, Weining Gu, Yaping Jiang, Qiudeng Que
  • Patent number: 7351877
    Abstract: The present disclosure provides methods for obtaining the targeted integration of a DNA molecule into the genome of a host cell using a recombinase. The methods disclosed herein can be used with a variety of host cells, including, for example, dicotyledonous and monocotyledonous plant cells. The present disclosure provides a method for effecting site-specific recombination of DNA within a plant cell, comprising: introducing into the plant cell a target nucleotide sequence comprising a first Int recognition site; introducing into the plant cell a donor nucleotide sequence comprising a second Int recognition site; and introducing into the plant cell an integrase or integrase complex.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: April 1, 2008
    Assignee: Syngenta Participations AG
    Inventors: Janet Louise Suttie, Mary-Dell Chilton, Qiudeng Que
  • Publication number: 20060130179
    Abstract: The present disclosure provides methods for obtaining the targeted integration of a DNA molecule into the genome of a host cell using a recombinase. The methods disclosed herein can be used with a variety of host cells, including for example, dicotyledonous and monocotyledonous plant cells. The present disclosure provides a method for effecting site-specific recombination of DNA within a plant cell, comprising: introducing into the plant cell a target nucleotide sequence comprising a first Int recognition site; introducing into the plant cell a donor nucleotide sequence comprising a second Int recognition site. ; and introducing into the plant cell an integrase or integrase complex.
    Type: Application
    Filed: March 28, 2003
    Publication date: June 15, 2006
    Inventors: Janet Suttie, Mary-Dell Chilton, Qiudeng Que
  • Publication number: 20050238576
    Abstract: A method and apparatus of dispensing a radiopharmaceutical wherein a source of flushing fluid is connected to a first port of a fluid delivery set; a pressurizing unit of a powered injector system (including a powered injector and the pressurizing unit) is connected to a second port of the fluid delivery set; air is purged from the fluid delivery set; and, after purging air from the fluid delivery set, a third port of the fluid delivery set is connected to a source of the radiopharmaceutical. A valve system is included to control flow of fluid. A syringe is operatively connected with a powered injector. A radioactive shield encloses the syringe during operation to protect personnel from detrimental effects. A dose calibrator measure the radioactivity in the syringe.
    Type: Application
    Filed: February 15, 2005
    Publication date: October 27, 2005
    Inventors: Mary Dell, Erik Witt
  • Publication number: 20030226164
    Abstract: The present disclosure provides methods for obtaining the targeted integration of a DNA molecule into the genome of a host cell using a recombinase. The methods disclosed herein can be used with a variety of host cells, including, for example, dicotyledonous and monocotyledonous plant cells. The present disclosure provides a method for effecting site-specific recombination of DNA within a plant cell, comprising: introducing into the plant cell a target nucleotide sequence comprising a first Int recognition site; introducing into the plant cell a donor nucleotide sequence comprising a second Int recognition site; and introducing into the plant cell an integrase or integrase complex.
    Type: Application
    Filed: March 28, 2003
    Publication date: December 4, 2003
    Applicant: Syngenta Participations AG
    Inventors: Janet Louise Suttie, Mary-Dell Chilton, Qiudeng Que
  • Patent number: 6051409
    Abstract: The present invention provides an improved method for achieving stable integration of an exogenous DNA fragment in intact form into the genome of a eukaryotic cell, particularly a plant cell. The method comprises providing the exogenous DNA together with one or more proteins which promote integration of the exogenous DNA to the eukaryotic cell targeted for transformation, wherein the proteins are provided in the form of a chimeric gene or translatable RNA capable of expression in the eukaryotic cell. The method is particularly applied to plant cells to achieve stable integration of an exogenous DNA fragment bounded by T-DNA borders in intact form using integration-promoting proteins derived from Agrobacterium. Transgenic cultures, tissues and whole organisms, particularly transgenic plants, can be generated from cells transformed according to the method of the invention.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: April 18, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Genevieve Hansen, Mary-Dell Chilton
  • Patent number: 6051757
    Abstract: Inactivation of the cytokinin autonomy gene of T-DNA in broad host range Ti plasmid produces mutant T-DNA vectors suitable for insertion of foreign genes; insertion of the mutant T-DNA by an in vitro tissue culture technique or any other technique into plant cells produces genetically engineered plant cells that can be regenerated into complete plants with roots. The inactivation of the cytokinin autonomy gene disarms the Ti plasmid and produces a useful gene vector for higher plants. The inactivation of the cytokinin gene may be accomplished by techniques such as point mutation, inversion, deletion, transposition, substitution or insertion.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: April 18, 2000
    Assignee: Washington University
    Inventors: Kenneth Allen Barton, Andrew Norton Binns, Mary-Dell Matchett Chilton, Antonius J. M. Matzke