Patents by Inventor Mary K. Salit

Mary K. Salit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8837540
    Abstract: A spectroscopic assembly is provided. The spectroscopic assembly includes a thermal isolation platform, a gas reference cell encasing a gas and attached to the thermal isolation platform, the gas reference cell having at least one optically-transparent window, and at least one heater configured to raise a temperature of the encased gas. When a beamsplitter is configured to reflect a portion of an input optical beam emitted by a laser to be incident on the at least one optically-transparent window of the gas reference cell, the reflected portion of the input optical beam is twice transmitted through the gas. When a detector is configured to receive the optical beam twice transmitted through the gas, a feedback signal is provided to the laser to stabilize the laser.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 16, 2014
    Assignee: Honeywell International Inc.
    Inventors: Kenneth Salit, Jeff A. Ridley, Mary K. Salit, Jennifer S. Strabley, Jeffrey Kriz
  • Patent number: 8830479
    Abstract: In one embodiment a system including a resonator fiber-optic gyroscope configured to measure rotation rate is provided. The resonator fiber-optic gyroscope includes a sensing resonator have a first resonance frequency for a first laser beam propagation direction and a second resonance frequency for a second laser beam propagation direction, an optical mixer coupled to an output of the sensing resonator and configured to mix an output of the sensing resonator with a reference laser, wherein the optical mixer outputs a beat signal, and a resonance tracking electronics coupled to the optical mixer. The resonance tracking electronics are configured to demodulate the beat signal at a frequency offset to produce first in-phase and quadrature demodulated information, generate R-squared information from a sum of squares of the first in-phase and quadrature demodulated information, and demodulate the R-squared information at a resonance tracking modulation frequency.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 9, 2014
    Assignee: Honeywell International Inc.
    Inventors: Tiequn Qiu, Lee K. Strandjord, Glen A. Sanders, Mary K. Salit
  • Publication number: 20140211211
    Abstract: In one embodiment a system including a resonator fiber-optic gyroscope configured to measure rotation rate is provided. The resonator fiber-optic gyroscope includes a sensing resonator have a first resonance frequency for a first laser beam propagation direction and a second resonance frequency for a second laser beam propagation direction, an optical mixer coupled to an output of the sensing resonator and configured to mix an output of the sensing resonator with a reference laser, wherein the optical mixer outputs a beat signal, and a resonance tracking electronics coupled to the optical mixer. The resonance tracking electronics are configured to demodulate the beat signal at a frequency offset to produce first in-phase and quadrature demodulated information, generate R-squared information from a sum of squares of the first in-phase and quadrature demodulated information, and demodulate the R-squared information at a resonance tracking modulation frequency.
    Type: Application
    Filed: January 28, 2013
    Publication date: July 31, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Tiequn Qiu, Lee K. Strandjord, Glen A. Sanders, Mary K. Salit
  • Patent number: 8687198
    Abstract: A ring laser gyroscope includes active cavity containing gain medium, first reflective surfaces coupled to active cavity, medium exciter to excite gain medium, second reflective surfaces coupled to first passive cavity, and third reflective surfaces coupled to second passive cavity. Excited gain medium induces first and second laser fields within active cavity. First plurality of reflective surfaces includes first, second, and third reflective surfaces that reflect light within active cavity. Second plurality of reflective surfaces includes first, fourth, and fifth reflective surfaces that reflect light within first passive cavity. Third plurality of reflective surfaces includes fourth, sixth, and seventh reflective surfaces that reflect light within second passive cavity. First and fourth reflective surfaces are partially transmissive such that they both transmit and reflect light.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 1, 2014
    Assignee: Honeywell International Inc.
    Inventors: Mary K. Salit, Kenneth Salit, Paul E. Bauhahn
  • Publication number: 20140062608
    Abstract: In an example, a chip-scale atomic clock physics package is provided. The physics package includes a body defining a cavity having a base surface and one or more side walls. The cavity includes a first step surface and a second step surface defined in the one or more side walls. A first scaffold mounted to the base surface in the cavity. One or more spacers defining an aperture therethrough are mounted to the second step surface in the cavity. A second scaffold is mounted to a first surface of the one or more spacers spans across the aperture of the one or more spacers. A third scaffold is mounted to a second surface of the one or more spacers in the cavity and spans across the aperture of the one or more spacers. Other components of the physics package are mounted to the first, second, and third scaffold.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 6, 2014
    Applicant: Honeywell International Inc.
    Inventors: Jeff A. Ridley, Robert Compton, Mary K. Salit, Jeffrey James Kriz
  • Patent number: 8624682
    Abstract: In an example, a chip-scale atomic clock physics package is provided. This chip-scale atomic clock physics package includes a body defining a cavity, and a first scaffold mounted in the cavity. A laser is mounted on the first surface of the first scaffold. A second scaffold is also mounted in the cavity. The second scaffold is disposed such that the first surface of the second scaffold is facing the first scaffold. A first photodetector is mounted on the first surface of the second scaffold. A vapor cell is mounted on the first surface of the second scaffold. A waveplate is also included, wherein the laser, waveplate, first photodetector, and vapor cell are disposed such that a beam from the laser can propagate through the waveplate and the vapor cell and be detected by the first photodetector. A lid is also included for covering the cavity.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 7, 2014
    Assignee: Honeywell International Inc.
    Inventors: Jeff A. Ridley, Robert Compton, Mary K. Salit, Jeffrey Kriz
  • Publication number: 20130070253
    Abstract: A ring laser gyroscope includes active cavity containing gain medium, first reflective surfaces coupled to active cavity, medium exciter to excite gain medium, second reflective surfaces coupled to first passive cavity, and third reflective surfaces coupled to second passive cavity. Excited gain medium induces first and second laser fields within active cavity. First plurality of reflective surfaces includes first, second, and third reflective surfaces that reflect light within active cavity. Second plurality of reflective surfaces includes first, fourth, and fifth reflective surfaces that reflect light within first passive cavity. Third plurality of reflective surfaces includes fourth, sixth, and seventh reflective surfaces that reflect light within second passive cavity. First and fourth reflective surfaces are partially transmissive such that they both transmit and reflect light.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Mary K. Salit, Kenneth Salit, Paul E. Bauhahn
  • Publication number: 20130043956
    Abstract: System and methods for a nanofabricated optical circular polarizer are provided. In one embodiment, a nanofabricated circular polarizer comprises a quarter wave plate; and a linear polarizer formed on a surface of the quarter wave plate.
    Type: Application
    Filed: August 15, 2011
    Publication date: February 21, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Mary K. Salit, Robert Compton, Jeff A. Ridley
  • Publication number: 20130003059
    Abstract: A spectroscopic assembly is provided. The spectroscopic assembly includes a thermal isolation platform, a gas reference cell encasing a gas and attached to the thermal isolation platform, the gas reference cell having at least one optically-transparent window, and at least one heater configured to raise a temperature of the encased gas. When a beamsplitter is configured to reflect a portion of an input optical beam emitted by a laser to be incident on the at least one optically-transparent window of the gas reference cell, the reflected portion of the input optical beam is twice transmitted through the gas. When a detector is configured to receive the optical beam twice transmitted through the gas, a feedback signal is provided to the laser to stabilize the laser.
    Type: Application
    Filed: December 14, 2011
    Publication date: January 3, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Kenneth Salit, Jeff A. Ridley, Mary K. Salit, Jennifer S. Strabley, Jeffrey Kriz
  • Publication number: 20120313717
    Abstract: In an example, a chip-scale atomic clock physics package is provided. This chip-scale atomic clock physics package includes a body defining a cavity, and a first scaffold mounted in the cavity. A laser is mounted on the first surface of the first scaffold. A second scaffold is also mounted in the cavity. The second scaffold is disposed such that the first surface of the second scaffold is facing the first scaffold. A first photodetector is mounted on the first surface of the second scaffold. A vapor cell is mounted on the first surface of the second scaffold. A waveplate is also included, wherein the laser, waveplate, first photodetector, and vapor cell are disposed such that a beam from the laser can propagate through the waveplate and the vapor cell and be detected by the first photodetector. A lid is also included for covering the cavity.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 13, 2012
    Applicant: Honeywell International Inc.
    Inventors: Jeff A. Ridley, Robert Compton, Mary K. Salit, Jeffrey Kriz
  • Patent number: 8067991
    Abstract: A chip-scale atomic clock comprises a physics package and a laser die located in a first thermal zone of the physics package. A quarter wave plate is mounted in the physics package and is in optical communication with the laser die. A vapor cell is mounted in the physics package and is in optical communication with the quarter wave plate. The vapor cell is located in a second thermal zone that is independent from the first thermal zone. An optical detector is mounted in the physics package and is in optical communication with the vapor cell. The first thermal zone provides a first operation temperature at a first stability point associated with the laser die, and the second thermal zone provides a second operation temperature at a second stability point associated with the vapor cell.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: November 29, 2011
    Assignee: Honeywell International Inc.
    Inventors: Daniel W. Youngner, Jeff A. Ridley, Mary K. Salit, Son T. Lu, Linda J. Forner
  • Publication number: 20110187466
    Abstract: A chip-scale atomic clock comprises a physics package and a laser die located in a first thermal zone of the physics package. A quarter wave plate is mounted in the physics package and is in optical communication with the laser die. A vapor cell is mounted in the physics package and is in optical communication with the quarter wave plate. The vapor cell is located in a second thermal zone that is independent from the first thermal zone. An optical detector is mounted in the physics package and is in optical communication with the vapor cell. The first thermal zone provides a first operation temperature at a first stability point associated with the laser die, and the second thermal zone provides a second operation temperature at a second stability point associated with the vapor cell.
    Type: Application
    Filed: September 27, 2010
    Publication date: August 4, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel W. Youngner, Jeff A. Ridley, Mary K. Salit, Son T. Lu