Patents by Inventor Mary M. Eshaghian-Wilner

Mary M. Eshaghian-Wilner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8193598
    Abstract: Nano-scale and multi-scale computational architectures using spin waves as a physical mechanism for device interconnection are provided. Solid-state spin-wave computing devices using nano-scale and multi-scale computational architectures comprised of a plurality of inputs and a plurality of outputs are described where such devices are configured to simultaneously transmit data elements from the inputs to the outputs by using spin-waves of differing frequencies. These devices include but are not limited to a spin-wave crossbar, a spin-wave reconfigurable mesh, a spin-wave fully-interconnected cluster, a hierarchical multi-scale spin-wave crossbar, a hierarchical multi-scale spin-wave reconfigurable mesh and a hierarchical multi-scale spin-wave fully-interconnected cluster.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: June 5, 2012
    Assignee: The Regents of the University of California
    Inventors: Mary M. Eshaghian-Wilner, Alexander Khitun, Kang L. Wang
  • Patent number: 7535070
    Abstract: Nano-scale and multi-scale computational architectures using spin waves as a physical mechanism for device interconnection are provided. Solid-state spin-wave computing devices using nano-scale and multi-scale computational architectures comprised of a plurality of inputs and a plurality of outputs are described where such devices are configured to simultaneously transmit data elements from the inputs to the outputs by using spin-waves of differing frequencies. These devices include but are not limited to a spin-wave crossbar, a spin-wave reconfigurable mesh, a spin-wave fully-interconnected cluster, a hierarchical multi-scale spin-wave crossbar, a hierarchical multi-scale spin-wave reconfigurable mesh and a hierarchical multi-scale spin-wave fully-interconnected cluster.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: May 19, 2009
    Assignee: The Regents of the University of California
    Inventors: Mary M. Eshaghian-Wilner, Alexander Khitun, Kang L. Wang
  • Publication number: 20090096044
    Abstract: Nano-scale and multi-scale computational architectures using spin waves as a physical mechanism for device interconnection are provided. Solid-state spin-wave computing devices using nano-scale and multi-scale computational architectures comprised of a plurality of inputs and a plurality of outputs are described where such devices are configured to simultaneously transmit data elements from the inputs to the outputs by using spin-waves of differing frequencies. These devices include but are not limited to a spin-wave crossbar, a spin-wave reconfigurable mesh, a spin-wave fully-interconnected cluster, a hierarchical multi-scale spin-wave crossbar, a hierarchical multi-scale spin-wave reconfigurable mesh and a hierarchical multi-scale spin-wave fully-interconnected cluster.
    Type: Application
    Filed: November 4, 2008
    Publication date: April 16, 2009
    Inventors: Mary M. Eshaghian-Wilner, Alexander Khitun, Kang L. Wang