Patents by Inventor Maryam Rofougaran

Maryam Rofougaran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10917126
    Abstract: An outphasing calibration method in an outphasing calibration RF transmitter comprises detection of differences of a first plurality of signal characteristics of a first plurality of amplified RF signals across at least a transmitter antenna and a plurality of load impedances. The first plurality of amplified RF signals corresponds to a first plurality of constant-envelope signals. Accordingly, at least a generation of a second plurality of constant-envelope signals and at least one signal characteristic of each of a second plurality of constant-envelope RF signals on a plurality of transmission paths are controlled. At least one of a first calibration or a second calibration of a second plurality of signal characteristics of the second plurality of constant-envelope signals is executed based on the controlled generation of the second plurality of constant-envelope signals and the at least one controlled signal characteristic of each of the second plurality of constant-envelope RF signals.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: February 9, 2021
    Assignee: MOVANDI CORPORATION
    Inventors: Farid Shirinfar, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Michael Boers, Seunghwan Yoon, Donghyup Shin, Stephen Wu, Maryam Rofougaran
  • Publication number: 20210028555
    Abstract: An apparatus comprising at least a plurality of antenna modules mounted on a printed circuit board (PCB) is disclosed. The PCB includes a plurality of holes embedded with a heat sink. Each antenna module comprises an antenna substrate. Each antenna module further comprises a plurality of three-dimensional (3-D) antenna cells that are mounted on a first surface of the antenna substrate. Each antenna module further comprises a plurality of packaged circuitry that are mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Furthermore, each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Inventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Publication number: 20210014850
    Abstract: A communication device initiates beam acquisition in a receive-only mode. Beam reception is set to an omni mode in which different beams of RF signals are receivable at the communication device from different directions. A primary signal synchronization (PSS) search is executed from each signal synchronization block location based on control information acquired directly from a first base station over a long-term evolution (LTE) control plane link or from a customer premise equipment (CPE) or user equipment (UE) that is in a radio resource control (RRC) connected state. The communication of the beam of RF signals that has highest received signal strength is activated in a new radio (NR) frequency to the UE or the CPE based on at least a PSS detected in the PSS search, for low-latency non-standalone access to the beam of RF signals in NR frequency at the UE or the CPE.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 14, 2021
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran, Sam Gharavi
  • Patent number: 10879622
    Abstract: An apparatus comprising at least a plurality of antenna modules mounted on a printed circuit board (PCB) is disclosed. The PCB includes a plurality of holes embedded with a heat sink. Each antenna module comprises an antenna substrate. Each antenna module further comprises a plurality of three-dimensional (3-D) antenna cells that are mounted on a first surface of the antenna substrate. Each antenna module further comprises a plurality of packaged circuitry that are mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Furthermore, each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 29, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Seunghwan Yoon, Zhihui Wang, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10879944
    Abstract: An outphasing calibration method in an outphasing calibration RF transmitter comprises detection of differences of a first plurality of signal characteristics of a first plurality of amplified RF signals across at least a transmitter antenna and a plurality of load impedances. The first plurality of amplified RF signals corresponds to a first plurality of constant-envelope signals. Accordingly, at least a generation of a second plurality of constant-envelope signals and at least one signal characteristic of each of a second plurality of constant-envelope RF signals on a plurality of transmission paths are controlled. At least one of a first calibration or a second calibration of a second plurality of signal characteristics of the second plurality of constant-envelope signals is executed based on the controlled generation of the second plurality of constant-envelope signals and the at least one controlled signal characteristic of each of the second plurality of constant-envelope RF signals.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: December 29, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Farid Shirinfar, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Michael Boers, Seunghwan Yoon, Donghyup Shin, Stephen Wu, Maryam Rofougaran
  • Publication number: 20200403573
    Abstract: The outphasing power combiner circuit includes a transformer having a primary coil coupled to a first power amplifier (PA) and a second PA, and a secondary coil. The secondary coil supplies a current to an antenna based on a first direction of a first phase of a first amplified constant-envelope signal in the primary coil with respect to a second phase of a second amplified constant-envelope signal in the primary coil. The outphasing power combiner circuit further includes load impedance coupled between a median point of the primary coil and ground. The load impedance dissipates the current based on a second direction of the first phase of the first amplified constant-envelope signal in the primary coil with respect to the second phase of the second amplified constant-envelope signal in the primary coil, which results in improved power efficiency.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 24, 2020
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran, Sam Gharavi
  • Publication number: 20200403689
    Abstract: A repeater device for New Radio (NR) communication, includes a baseband processor that establishes a communication link with a base station and decodes control information that is received from the base station through a control channel. The baseband processor further aligns a timing reference of the repeater device with that of an NR cell frame for an uplink or a downlink time division duplex (TDD) switching, based on the decoded control information. The baseband processor further selects and forms one or more donor beams of RF signals at a donor side of the repeater device and one or more service beams of RF signals at a service side of the repeater device, based on the decoded control information and the aligned timing reference with that of the NR cell frame for the uplink or the downlink TDD switching for communication in an NR frequency band.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Ahmadreza ROFOUGARAN, Brima Ibrahim, Raghu Mulagada, Walid Nabhane, Mohsen Pourkhaatoun, Wan-Jong Kim, Maryam ROFOUGARAN, Sam GHARAVI
  • Publication number: 20200395682
    Abstract: Provided is an apparatus including a plurality of antenna modules and a printed circuit board (PCB) having a plurality of holes embedded with a heat sink. Each antenna module includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells mounted on a first surface of the antenna substrate, and a plurality of packaged circuitry mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
    Type: Application
    Filed: August 27, 2020
    Publication date: December 17, 2020
    Inventors: Seunghwan Yoon, Franco De Flaviis, Alfred Grau Besoli, Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10862559
    Abstract: A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: December 8, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Patent number: 10854995
    Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: December 1, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Ahmadreza Rofougaran, Farid Shirinfar, Sam Gharavi, Michael Boers, Seunghwan Yoon, Alfred Grau Besoli, Maryam Rofougaran
  • Publication number: 20200367144
    Abstract: A communication device that establishes a short-range wireless communication link with a fixed wireless access (FWA) user equipment (UE) or a mobile UE that is in a specified proximal range of the communication device. The FWA UE or the mobile UE is in a radio resource control (RRC) connected state over LTE network, is determined. The communication device detects whether a first new radio (NR) carrier is assigned to the FWA UE or the mobile UE without using the communication device. A carrier measurement is determined for NR is established at the FWA UE (or mobile UE) by an LTE-enabled base station in the RRC connected state. The communication device controls assignment of a second NR carrier to the FWA UE or the mobile UE for non-standalone initial access to a beam of RF data signals in the second NR carrier at the FWA UE or the mobile UE.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 19, 2020
    Inventors: Ahmadreza Rofougaran, Sam Gharavi, Maryam Rofougaran
  • Patent number: 10840954
    Abstract: An outphasing calibration method in an outphasing calibration RF transmitter comprises detection of differences of a first plurality of signal characteristics of a first plurality of amplified RF signals across at least a transmitter antenna and a plurality of load impedances. The first plurality of amplified RF signals corresponds to a first plurality of constant-envelope signals. Accordingly, at least a generation of a second plurality of constant-envelope signals and at least one signal characteristic of each of a second plurality of constant-envelope RF signals on a plurality of transmission paths are controlled. At least one of a first calibration or a second calibration of a second plurality of signal characteristics of the second plurality of constant-envelope signals is executed based on the controlled generation of the second plurality of constant-envelope signals and the at least one controlled signal characteristic of each of the second plurality of constant-envelope RF signals.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: November 17, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Farid Shirinfar, Ahmadreza Rofougaran, Sam Gharavi, Kartik Sridharan, Michael Boers, Seunghwan Yoon, Donghyup Shin, Stephen Wu, Maryam Rofougaran
  • Patent number: 10834724
    Abstract: A communication device initiates beam acquisition in a receive-only mode. Beam reception is set to an omni mode in which different beams of RF signals are receivable at the communication device from different directions. A primary signal synchronization (PSS) search is executed from each signal synchronization block location based on control information acquired directly from a first base station over a long-term evolution (LTE) control plane link or from a customer premise equipment (CPE) or user equipment (UE) that is in a radio resource control (RRC) connected state. The communication of the beam of RF signals that has highest received signal strength is activated in a new radio (NR) frequency to the UE or the CPE based on at least a PSS detected in the PSS search, for low-latency non-standalone access to the beam of RF signals in NR frequency at the UE or the CPE.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 10, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran, Sam Gharavi
  • Publication number: 20200350698
    Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Ahmadreza ROFOUGARAN, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Seunghwan YOON, Alfred Grau Besoli, Maryam ROFOUGARAN
  • Publication number: 20200350697
    Abstract: A wireless communications system includes a first transceiver with a first phased array antenna panel having circularly polarization receive antennas and circularly polarization transmit antennas, where the circularly polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the circularly polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Ahmadreza ROFOUGARAN, Farid SHIRINFAR, Sam GHARAVI, Michael BOERS, Seunghwan YOON, Alfred Grau Besoli, Maryam ROFOUGARAN
  • Patent number: 10826584
    Abstract: A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: November 3, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Kartik Sridharan, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Sam Gharavi, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran
  • Publication number: 20200344739
    Abstract: A communication device initiates beam acquisition in a receive-only mode. Beam reception is set to an omni mode in which different beams of RF signals are receivable at the communication device from different directions. A primary signal synchronization (PSS) search is executed from each signal synchronization block location based on control information acquired directly from a first base station over a long-term evolution (LTE) control plane link or from a customer premise equipment (CPE) or user equipment (UE) that is in a radio resource control (RRC) connected state. The communication of the beam of RF signals that has highest received signal strength is activated in a new radio (NR) frequency to the UE or the CPE based on at least a PSS detected in the PSS search, for low-latency non-standalone access to the beam of RF signals in NR frequency at the UE or the CPE.
    Type: Application
    Filed: April 29, 2019
    Publication date: October 29, 2020
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran, Sam Gharavi
  • Publication number: 20200343953
    Abstract: A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Kartik SRIDHARAN, Ahmadreza ROFOUGARAN, Michael BOERS, Seunghwan YOON, Sam GHARAVI, Donghyup SHIN, Farid SHIRINFAR, Stephen WU, Maryam ROFOUGARAN
  • Publication number: 20200343963
    Abstract: An active repeater device includes a primary sector and one or more secondary sectors, receives a first beam of input RF signals. A first set of analog baseband signals, are generated based on received first beam of input RF signals. The first set of analog baseband signals are converted to a first set of coded data signals and control information is extracted from the first set of coded data signals by decoding only a header portion of the first set of coded data signals without demodulation of data portion of the first set of coded data signals. Based on the extracted control information, the first set of coded data signals are transmitted as beams of output RF signals to remote user equipment. The transmission is independent of demodulation of the data portion within the active repeater device to reduce latency for transmission of the first set of coded data signals.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Sam GHARAVI, Ahmadreza ROFOUGARAN, Michael BOERS, Seunghwan YOON, Kartik SRIDHARAN, Donghyup SHIN, Farid SHIRINFAR, Stephen WU, Maryam ROFOUGARAN
  • Patent number: 10819415
    Abstract: An active repeater device includes a primary sector and one or more secondary sectors, receives a first beam of input RF signals. A first set of analog baseband signals, are generated based on received first beam of input RF signals. The first set of analog baseband signals are converted to a first set of coded data signals and control information is extracted from the first set of coded data signals by decoding only a header portion of the first set of coded data signals without demodulation of data portion of the first set of coded data signals. Based on the extracted control information, the first set of coded data signals are transmitted as beams of output RF signals to remote user equipment. The transmission is independent of demodulation of the data portion within the active repeater device to reduce latency for transmission of the first set of coded data signals.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: October 27, 2020
    Assignee: MOVANDI CORPORATION
    Inventors: Sam Gharavi, Ahmadreza Rofougaran, Michael Boers, Seunghwan Yoon, Kartik Sridharan, Donghyup Shin, Farid Shirinfar, Stephen Wu, Maryam Rofougaran