Patents by Inventor Marybeth Perrino

Marybeth Perrino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7353590
    Abstract: A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
  • Patent number: 6986198
    Abstract: A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer termination in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: January 17, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
  • Publication number: 20060005383
    Abstract: A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
    Type: Application
    Filed: September 12, 2005
    Publication date: January 12, 2006
    Applicant: International Business Machines Corporation
    Inventors: Kenneth Fallon, Miguel Jimarez, Ross Keesler, John Lauffer, Roy Magnuson, Voya Markovich, Irv Memis, Jim Paoletti, Marybeth Perrino, John Welsh, William Wilson
  • Publication number: 20040134685
    Abstract: A method of forming a printed circuit board with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the board including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
    Type: Application
    Filed: December 22, 2003
    Publication date: July 15, 2004
    Applicant: International Business Machines Corporation
    Inventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
  • Patent number: 6750405
    Abstract: A method of forming a printed circuit board or circuit card is provided with a metal layer which serves as a power plane sandwiched between a pair of photoimageable dielectric layers. Photoformed metal filled vias and photoformed plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials and connected to the vias and plated through holes. A border may be around the board or card including a metal layer terminating in from the edge of one of the dielectric layers. A copper foil is provided with clearance holes. First and second layers of photoimageable curable dielectric material is disposed on opposite sides of the copper which are photoimageable material. The patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. At the clearance holes in the copper, through holes are developed where holes were patterned in both dielectric layers.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: June 15, 2004
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
  • Patent number: 6558981
    Abstract: An encapsulated semiconductor chip module. The chip module has the overlying encapsulant adhered directly and integrally to bare portions of the substrate to which the chip is mounted. This configuration enhances the adhesion and inhibits unintended delamination of the encapsulant from the balance of the module. The module is made by patterning anchor openings into the solder mask. The anchor openings expose corresponding portions of the substrate. It is important to locate the anchor openings over parts of the substrate that do not have circuitry on them, that is, on bare portions, so as to avoid corrosion or contamination of the circuit connections.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: May 6, 2003
    Assignee: International Business Machines Corporation
    Inventors: Miguel A. Jimarez, Marybeth Perrino, Son K. Tran, Tien Y. Wu
  • Patent number: 6451509
    Abstract: A method forming a composite laminate structure includes providing first and second circuit board element each having circuitry on at least one face thereof and plated through holes. A voltage plane element is provided having at least one voltage plane having opposite faces with layers of partially cured photodielectric material on each face. At least one hole is photopatterned and etched through the voltage plane element but completely isolated from the voltage plane. Each through hole in the voltage plane element is aligned with a plated through hole in each of the circuit board elements to provide a surface on the voltage plane element communicating with the plated through holes. The voltage plane is laminated between the circuit board elements and the photoimageable material on the voltage plane is fully cured.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: September 17, 2002
    Assignee: International Business Machines Corporation
    Inventors: Ross W. Keesler, Voya R. Markovich, Jim P. Paoletti, Marybeth Perrino, William E. Wilson
  • Publication number: 20010026959
    Abstract: An encapsulated semiconductor chip module. The chip module has the overlying encapsulant adhered directly and integrally to bare portions of the substrate to which the chip is mounted. This configuration enhances the adhesion and inhibits unintended delamination of the encapsulant from the balance of the module. The module is made by patterning anchor openings into the solder mask. The anchor openings expose corresponding portions of the substrate. It is important to locate the anchor openings over parts of the substrate that do not have circuitry on them, that is, on bare portions, so as to avoid corrosion or contamination of the circuit connections.
    Type: Application
    Filed: May 3, 2001
    Publication date: October 4, 2001
    Inventors: Miguel A. Jimarez, Marybeth Perrino, Son K. Tran, Tien Y. Wu
  • Publication number: 20010023044
    Abstract: A method forming a composite laminate structure includes providing first and second circuit board element each having circuitry on at least one face thereof and plated through holes. A voltage plane element is provided having at least one voltage plane having opposite faces with layers of partially cured photodielectric material on each face. At least one hole is photopatterned and etched through the voltage plane element but completely isolated from the voltage plane. Each through hole in the voltage plane element is aligned with a plated through hole in each of the circuit board elements to provide a surface on the voltage plane element communicating with the plated through holes. The voltage plane is laminated between the circuit board elements and the photoimageable material on the voltage plane is fully cured.
    Type: Application
    Filed: January 2, 2001
    Publication date: September 20, 2001
    Inventors: Ross W. Keesler, Voya R. Markovich, Jim P. Paoletti, Marybeth Perrino, William E. Wilson
  • Patent number: 6246124
    Abstract: An encapsulated semiconductor chip module. The chip module has the overlying encapsulant adhered directly and integrally to bare portions of the substrate to which the chip is mounted. This configuration enhances the adhesion and inhibits unintended delamination of the encapsulant from the balance of the module. The module is made by patterning anchor openings into the solder mask. The anchor openings expose corresponding portions of the substrate. It is important to locate the anchor openings over parts of the substrate that do not have circuitry on them, that is, on bare portions, so as to avoid corrosion or contamination of the circuit connections.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: June 12, 2001
    Assignee: International Business Machines Corporation
    Inventors: Miguel A. Jimarez, Marybeth Perrino, Son K. Tran, Tien Y. Wu
  • Patent number: 6204453
    Abstract: A method of forming a printed circuit board or circuit card is provided with a metal layer which serves as a power plane sandwiched between a pair of photoimageable dielectric layers. Photoformed metal filled vias and photoformed plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials and connected to the vias and plated through holes. A border may be around the board or card including a metal layer terminating in from the edge of one of the dielectric layers. A copper foil is provided with clearance holes. First and second layers of photoimageable curable dielectric material is disposed on opposite sides of the copper which are photoimageable material. The patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. At the clearance holes in the copper, through holes are developed where holes were patterned in both dielectric layers.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: March 20, 2001
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
  • Patent number: 6175087
    Abstract: A method forming a composite laminate structure includes providing first and second circuit board element each having circuitry on at least one face thereof and plated through holes. A voltage plane element is provided having at least one voltage plane having opposite faces with layers of partially cured photodielectric material on each face. At least one hole is photopatterned and etched through the voltage plane element but completely isolated from the voltage plane. Each through hole in the voltage plane element is aligned with a plated through hole in each of the circuit board elements to provide a surface on the voltage plane element communicating with the plated through holes. The voltage plane is laminated between the circuit board elements and the photoimageable material on the voltage plane is fully cured.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: January 16, 2001
    Assignee: International Business Machines Corporation
    Inventors: Ross W. Keesler, Voya R. Markovich, Jim P. Paoletti, Marybeth Perrino, William E. Wilson