Patents by Inventor Masaaki Ikebe

Masaaki Ikebe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8128867
    Abstract: A method for producing a cemented carbide material includes producing an M3C type double carbide (wherein M comprises M1 and M2; M1 represents one or more elements selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W; and M2 represents one or more elements selected from the group consisting of Fe, Co and Ni) as a main component of the surface portion; reducing heat treating the compact at a vacuum atmosphere; carburizing the resulting WC—Co compact at a temperature of 800 to 1100° C.; subjecting the carburized compact to liquid phase sintering at a temperature of more than 1350° C. to form a sintered body; and coating a surface layer of the sintered body with a compound containing boron and/or silicon and subjecting the coated sintered body to a diffusion heat treatment at a temperature within a range from 1200 to 1350° C.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: March 6, 2012
    Assignee: Sanalloy Industry Co., Ltd.
    Inventors: Masahiro Iwasaki, Hidefumi Yanagita, Masaaki Ikebe
  • Publication number: 20110257003
    Abstract: This invention is related to a powder of a transition metal dissolved tungsten alloy carbide which comprises a transition metal element forcibly dissolved as a solid solution which represented by Formula [1] of M-W—C wherein M is one or more of Co, Fe, Ni and Mn and its tungsten alloy carbide diffused cemented carbide. The diffused cemented carbide is compatible with the conventional tungsten carbide diffused cemented carbide and comprises a binder metal and a tungsten alloy carbide which is provided with a solid solution phase of at least one transition metal element selected from the group consisting of cobalt, iron, nickel and manganese, included in a tungsten carbide skeleton, which exhibits a peak derived from a bcc tungsten phase in an X-ray diffraction diagram.
    Type: Application
    Filed: August 19, 2009
    Publication date: October 20, 2011
    Inventors: Masao Morishita, Hiroaki Yamamoto, Masaaki Ikebe, Masahiro Iwasaki, Hidefumi Yanagita, Hiroshi Nishimaki
  • Publication number: 20110243787
    Abstract: This invention is related to a powder of a tungsten alloy with a transition metal dissolved therein as a solid solution that is suitable as material for a cemented carbide represented by formula [1] and a material for a catalyst. The powder of tungsten alloy is characterized in that at least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel is dissolved as a solid solution in a tungsten grating and a peak derived from a bcc tungsten phase appears in an X-ray diffraction diagram. Formula [1]: M?W wherein M represents one or more elements selected from Co, Fe, Mn and Ni. The use of tungsten alloy powder can provide a tungsten carbide with a transition metal dissolved therein as a solid solution in which a solid solution phase comprising at least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel, tungsten and carbon is included in a tungsten carbide skeleton, and a tungsten carbide diffused cemented carbide.
    Type: Application
    Filed: August 19, 2009
    Publication date: October 6, 2011
    Applicant: Sanalloy Industry Co., Ltd.
    Inventors: Masao Morishita, Hiroaki Yamamoto, Masaaki Ikebe, Masahiro Iwasaki, Hidefumi Yanagita, Hiroshi Nishimaki
  • Publication number: 20110109020
    Abstract: A method for producing a cemented carbide material includes producing an M3C type double carbide (wherein M comprises M1 and M2; M1 represents one or more elements selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W; and M2 represents one or more elements selected from the group consisting of Fe, Co and Ni) as a main component of the surface portion; reducing heat treating the compact at a vacuum atmosphere; carburizing the resulting WC—Co compact at a temperature of 800 to 1100° C.; subjecting the carburized compact to liquid phase sintering at a temperature of more than 1350° C. to form a sintered body; and coating a surface layer of the sintered body with a compound containing boron and/or silicon and subjecting the coated sintered body to a diffusion heat treatment at a temperature within a range from 1200 to 1350° C.
    Type: Application
    Filed: January 3, 2011
    Publication date: May 12, 2011
    Applicant: SANALLOY INDUSTRY CO., LTD.
    Inventors: Masahiro Iwasaki, Hidefumi Yanagita, Masaaki Ikebe
  • Patent number: 7887747
    Abstract: The present invention provides a WC—Co system (the WC—Co system in the present invention means that it comprises not only hard grains composed mainly of WC and iron group metal powder containing Co, but also at least one kind selected from carbide, nitride, carbonitride and boride of elements in Groups IVa, Va and VIa of the Periodic Table, excluding WC, as hard grains) cemented carbide having high strength and high toughness which is excellent in wear resistance, toughness, chipping resistance and thermal crack resistance.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: February 15, 2011
    Assignee: Sanalloy Industry Co., Ltd.
    Inventors: Masahiro Iwasaki, Hidefumi Yanagita, Masaaki Ikebe
  • Publication number: 20070110607
    Abstract: The present invention provides a WC—Co system (the WC—Co system in the present invention means that it comprises not only hard grains composed mainly of WC and iron group metal powder containing Co, but also at least one kind selected from carbide, nitride, carbonitride and boride of elements in Groups IVa, Va and VIa of the Periodic Table, excluding WC, as hard grains) cemented carbide having high strength and high toughness which is excellent in wear resistance, toughness, chipping resistance and thermal crack resistance.
    Type: Application
    Filed: September 11, 2006
    Publication date: May 17, 2007
    Applicant: SANALLOY INDUSTRY CO., LTD.
    Inventors: Masahiro Iwasaki, Hidefumi Yanagita, Masaaki Ikebe