Patents by Inventor Masaaki Koizuka
Masaaki Koizuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8497191Abstract: A semiconductor device in which selectivity in epitaxial growth is improved. There is provided a semiconductor device comprising a gate electrode formed over an Si substrate, which is a semiconductor substrate, with a gate insulating film therebetween and an insulating layer formed over sides of the gate electrode and containing a halogen element. With this semiconductor device, a silicon nitride film which contains the halogen element is formed over the sides of the gate electrode when an SiGe layer is formed over the Si substrate. Therefore, the SiGe layer epitaxial-grows over the Si substrate with high selectivity. As a result, an OFF-state leakage current which flows between, for example, the gate electrode and source/drain regions is suppressed and a manufacturing process suitable for actual mass production is established.Type: GrantFiled: October 14, 2008Date of Patent: July 30, 2013Assignee: Fujitsu Semiconductor LimitedInventors: Masahiro Fukuda, Yosuke Shimamune, Masaaki Koizuka, Katsuaki Ookoshi
-
Patent number: 7679147Abstract: A semiconductor device in which selectivity in epitaxial growth is improved. There is provided a semiconductor device comprising a gate electrode formed over an Si substrate, which is a semiconductor substrate, with a gate insulating film therebetween and an insulating layer formed over sides of the gate electrode and containing a halogen element. With this semiconductor device, a silicon nitride film which contains the halogen element is formed over the sides of the gate electrode when an SiGe layer is formed over the Si substrate. Therefore, the SiGe layer epitaxial-grows over the Si substrate with high selectivity. As a result, an OFF-state leakage current which flows between, for example, the gate electrode and source/drain regions is suppressed and a manufacturing process suitable for actual mass production is established.Type: GrantFiled: August 28, 2008Date of Patent: March 16, 2010Assignee: Fujitsu Microelectronics LimitedInventors: Masahiro Fukuda, Yosuke Shimamune, Masaaki Koizuka, Katsuaki Ookoshi
-
Publication number: 20090117715Abstract: A semiconductor device in which selectivity in epitaxial growth is improved. There is provided a semiconductor device comprising a gate electrode formed over an Si substrate, which is a semiconductor substrate, with a gate insulating film therebetween and an insulating layer formed over sides of the gate electrode and containing a halogen element. With this semiconductor device, a silicon nitride film which contains the halogen element is formed over the sides of the gate electrode when an SiGe layer is formed over the Si substrate. Therefore, the SiGe layer epitaxial-grows over the Si substrate with high selectivity. As a result, an OFF-state leakage current which flows between, for example, the gate electrode and source/drain regions is suppressed and a manufacturing process suitable for actual mass production is established.Type: ApplicationFiled: October 14, 2008Publication date: May 7, 2009Applicant: FUJITSU LIMITEDInventors: Masahiro Fukuda, Yosuke Shimamune, Masaaki Koizuka, Katsuaki Ookoshi
-
Publication number: 20090045471Abstract: A semiconductor device in which selectivity in epitaxial growth is improved. There is provided a semiconductor device comprising a gate electrode formed over an Si substrate, which is a semiconductor substrate, with a gate insulating film therebetween and an insulating layer formed over sides of the gate electrode and containing a halogen element. With this semiconductor device, a silicon nitride film which contains the halogen element is formed over the sides of the gate electrode when an SiGe layer is formed over the Si substrate. Therefore, the SiGe layer epitaxial-grows over the Si substrate with high selectivity. As a result, an OFF-state leakage current which flows between, for example, the gate electrode and source/drain regions is suppressed and a manufacturing process suitable for actual mass production is established.Type: ApplicationFiled: August 28, 2008Publication date: February 19, 2009Applicant: FUJITSU LIMITEDInventors: Masahiro Fukuda, Yosuke Shimamune, Masaaki Koizuka, Katsuaki Ookoshi
-
Patent number: 7446394Abstract: A semiconductor device in which selectivity in epitaxial growth is improved. There is provided a semiconductor device comprising a gate electrode formed over an Si substrate, which is a semiconductor substrate, with a gate insulating film therebetween and an insulating layer formed over sides of the gate electrode and containing a halogen element. With this semiconductor device, a silicon nitride film which contains the halogen element is formed over the sides of the gate electrode when an SiGe layer is formed over the Si substrate. Therefore, the SiGe layer epitaxial-grows over the Si substrate with high selectivity. As a result, an OFF-state leakage current which flows between, for example, the gate electrode and source/drain regions is suppressed and a manufacturing process suitable for actual mass production is established.Type: GrantFiled: March 13, 2007Date of Patent: November 4, 2008Assignee: Fujitsu LimitedInventors: Masahiro Fukuda, Yosuke Shimamune, Masaaki Koizuka, Katsuaki Ookoshi
-
Publication number: 20070200203Abstract: A semiconductor device in which selectivity in epitaxial growth is improved. There is provided a semiconductor device comprising a gate electrode formed over an Si substrate, which is a semiconductor substrate, with a gate insulating film therebetween and an insulating layer formed over sides of the gate electrode and containing a halogen element. With this semiconductor device, a silicon nitride film which contains the halogen element is formed over the sides of the gate electrode when an SiGe layer is formed over the Si substrate. Therefore, the SiGe layer epitaxial-grows over the Si substrate with high selectivity. As a result, an OFF-state leakage current which flows between, for example, the gate electrode and source/drain regions is suppressed and a manufacturing process suitable for actual mass production is established.Type: ApplicationFiled: March 13, 2007Publication date: August 30, 2007Applicant: FUJITSU LIMITEDInventors: Masahiro Fukuda, Yosuke Shimamune, Masaaki Koizuka, Katsuaki Ookoshi
-
Patent number: 5641353Abstract: The present invention is to manufacture a low hydrogen-concentration silicon crystal having less micro defects caused from oxygen precipitation generated during an annealing process. Particularly, a silicon crystal including hydrogen concentration lower than 0.55.times.10.sup.11 cm.sup.-3, where the hydrogen concentration dependency is small and the micro defect density is less, may be used for a substrate of semiconductor devices. The low hydrogen-concentration silicon substrate is manufactured by measuring the hydrogen concentrations in a silicon crystal and in a hydrogen-doped silicon crystal having a known hydrogen concentration, where both the silicon crystals have been annealed at an equal condition so as to generate thermal donors therein, and by comparing thus measured hydrogen concentrations.Type: GrantFiled: November 30, 1995Date of Patent: June 24, 1997Assignee: Fujitsu LimitedInventors: Akito Hara, Masaaki Koizuka
-
Patent number: 5505157Abstract: The present invention is to manufacture a low hydrogen-concentration silicon crystal having less micro defects caused from oxygen precipitation generated during an annealing process. Particularly, a silicon crystal including hydrogen concentration lower than 0.55.times.10.sup.11 cm.sup.-3, where the hydrogen concentration dependency is small and the micro defect density is less, may be used for a substrate of semiconductor devices. The low hydrogen-concentration silicon substrate is manufactured by measuring the hydrogen concentrations in a silicon crystal and in a hydrogen-doped silicon crystal having a known hydrogen concentration, where both the silicon crystals have been annealed at an equal condition so as to generated thermal donors therein, and by comparing thus measured hydrogen concentrations.Type: GrantFiled: May 26, 1994Date of Patent: April 9, 1996Assignee: Fujitsu LimitedInventors: Akito Hara, Masaaki Koizuka