Patents by Inventor Masae Nagasawa

Masae Nagasawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9702032
    Abstract: An aluminum alloy fin material for a heat exchanger having suitable strength before brazing enabling easy fin formation, having high strength after brazing, having a high thermal conductivity (electrical conductivity) after brazing, and having superior sag resistance, erosion resistance, self corrosion prevention, and sacrificial anode effect, a method of production of the same, and a method of production of a heat exchanger using the fin material are provided, that is, an aluminum alloy fin material having a chemical composition of Si: 0.7 to 1.4 wt %, Fe: 0.5 to 1.4 wt %, Mn: 0.7 to 1.4 wt %, and Zn: 0.5 to 2.5 wt %, Mg as an impurity limited to 0.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: July 11, 2017
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Tomohiro Sasaki, Masae Nagasawa, Nobuki Takahashi
  • Publication number: 20150107731
    Abstract: An aluminum alloy fin material for a heat exchanger having suitable strength before brazing enabling easy fin formation, having high strength after brazing, having a high thermal conductivity (electrical conductivity) after brazing, and having superior sag resistance, erosion resistance, self corrosion prevention, and sacrificial anode effect, a method of production of the same, and a method of production of a heat exchanger using the fin material are provided, that is, an aluminum alloy fin material having a chemical composition of Si: 0.7 to 1.4 wt %, Fe: 0.5 to 1.4 wt %, Mn: 0.7 to 1.4 wt %, and Zn: 0.5 to 2.5 wt %, Mg as an impurity limited to 0.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 23, 2015
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hideki SUZUKI, Tomohiro SASAKI, Masae NAGASAWA, Nobuki TAKAHASHI
  • Patent number: 8999083
    Abstract: An aluminum alloy fin material for a heat exchanger having suitable strength before brazing enabling easy fin formation, having high strength after brazing, having a high thermal conductivity (electrical conductivity) after brazing, and having superior sag resistance, erosion resistance, self corrosion prevention, and sacrificial anode effect, a method of production of the same, and a method of production of a heat exchanger using the fin material are provided, that is, an aluminum alloy fin material having a chemical composition of Si: 0.7 to 1.4 wt %, Fe: 0.5 to 1.4 wt %, Mn: 0.7 to 1.4 wt %, and Zn: 0.5 to 2.5 wt %, Mg as an impurity limited to 0.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 7, 2015
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Tomohiro Sasaki, Masae Nagasawa, Nobuki Takahashi
  • Patent number: 8784582
    Abstract: A heat exchanger use high strength aluminum alloy fin material having a high strength and excellent in thermal conductivity, erosion resistance, sag resistance, sacrificial anodization effect, and self corrosion resistance, characterized by containing Si: 0.8 to 1.4 wt %, Fe: 0.15 to 0.7 wt %, Mn: 1.5 to 3.0 wt %, and Zn: 0.5 to 2.5 wt %, limiting the Mg as an impurity to 0.05 wt % or less, and having a balance of ordinary impurities and Al in chemical composition, having a metal structure before brazing of a fibrous crystal grain structure, a tensile strength before brazing of not more than 240 MPa, a tensile strength after brazing of not less than 150 MPa, and a recrystallized grain size after brazing of 500 ?m or more.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: July 22, 2014
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Yoshito Oki, Tomohiro Sasaki, Masae Nagasawa
  • Publication number: 20120261037
    Abstract: A heat exchanger use high strength aluminum alloy fin material having a high strength and excellent in thermal conductivity, erosion resistance, sag resistance, sacrificial anodization effect, and self corrosion resistance, characterized by containing Si: 0.8 to 1.4 wt %, Fe: 0.15 to 0.7 wt %, Mn: 1.5 to 3.0 wt %, and Zn: 0.5 to 2.5 wt %, limiting the Mg as an impurity to 0.05 wt % or less, and having a balance of ordinary impurities and Al in chemical composition, having a metal structure before brazing of a fibrous crystal grain structure, a tensile strength before brazing of not more than 240 MPa, a tensile strength after brazing of not less than 150 MPa, and a recrystallized grain size after brazing of 500 ?m or more.
    Type: Application
    Filed: June 25, 2012
    Publication date: October 18, 2012
    Applicant: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Yoshito Oki, Tomohiro Sasaki, Masae Nagasawa
  • Patent number: 8226781
    Abstract: A heat exchanger use high strength aluminum alloy fin material having a high strength and excellent in thermal conductivity, elusion resistance, sag resistance, sacrificial anodization effect, and self corrosion resistance, characterized by containing Si: 0.8 to 1.4 wt %, Fe: 0.15 to 0.7 wt %, Mn: 1.5 to 3.0 wt %, and Zn: 0.5 to 2.5 wt %, limiting the Mg as an impurity to 0.05 wt % or less, and having a balance of ordinary impurities and Al in chemical composition, having a metal structure before brazing of a fibrous crystal grain structure, a tensile strength before brazing of not more than 240 MPa, a tensile strength after brazing of not less than 150 MPa, and a recrystallized grain size after brazing of 500 ?m or more.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 24, 2012
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Yoshito Oki, Tomohiro Sasaki, Masae Nagasawa
  • Publication number: 20110293468
    Abstract: A heat exchanger use high strength aluminum alloy fin material having a high strength and excellent in thermal conductivity, elusion resistance, sag resistance, sacrificial anodivation effect, and self corrosion resistance, characterized by containing Si: 0.8 to 1.4 wt %, Fe: 0.15 to 0.7 wt %, Mn: 1.5 to 3.0 wt %, and Zn: 0.5 to 2.5 wt %, limiting the Mg as an impurity to 0.05 wt % or less, and having a balance of ordinary impurities and Al in chemical composition, having a metal structure before brazing of a fibrous crystal grain structure, a tensile strength before brazing of not more than 240 MPa, a tensile strength after brazing of not less than 150 MPa, and a recrystallized grain size after brazing of 500 ?m or more.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Inventors: Hideki Suzuki, Yoshito Oki, Tomohiro Sasaki, Masae Nagasawa
  • Patent number: 7998288
    Abstract: A heat exchanger use high strength aluminum alloy fin material having a high strength and excellent in thermal conductivity, erosion resistance, sag resistance, sacrificial anodization effect, and self corrosion resistance, characterized by containing Si: 0.8 to 1.4 wt %, Fe: 0.15 to 0.7 wt %, Mn: 1.5 to 3.0 wt %, and Zn: 0.5 to 2.5 wt %, limiting the Mg as an impurity to 0.05 wt % or less, and having a balance of ordinary impurities and Al in chemical composition, having a metal structure before brazing of a fibrous crystal grain structure, a tensile strength before brazing of not more than 240 MPa, a tensile strength after brazing of not less than 150 MPa, and a recrystallized grain size after brazing of 500 ?m or more.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: August 16, 2011
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Yoshito Oki, Tomohiro Sasaki, Masae Nagasawa
  • Publication number: 20100139899
    Abstract: A heat exchanger use high strength aluminum alloy fin material having a high strength and excellent in thermal conductivity, erosion resistance, sag resistance, sacrificial anodization effect, and self corrosion resistance, characterized by containing Si: 0.8 to 1.4 wt %, Fe: 0.15 to 0.7 wt %, Mn: 1.5 to 3.0 wt %, and Zn: 0.5 to 2.5 wt %, limiting the Mg as an impurity to 0.05 wt % or less, and having a balance of ordinary impurities and Al in chemical composition, having a metal structure before brazing of a fibrous crystal grain structure, a tensile strength before brazing of not more than 240 MPa, a tensile strength after brazing of not less than 150 MPa, and a recrystallized grain size after brazing of 500 ?m or more.
    Type: Application
    Filed: July 18, 2006
    Publication date: June 10, 2010
    Applicant: NPPON LIGHT METAL COMPANY, LTD.
    Inventors: Hideki Suzuki, Yoshito Oki, Tomohiro Sasaki, Masae Nagasawa
  • Publication number: 20090308500
    Abstract: An aluminum alloy fin material for a heat exchanger having suitable strength before brazing enabling easy fin formation, having high strength after brazing, having a high thermal conductivity (electrical conductivity) after brazing, and having superior sag resistance, erosion resistance, self corrosion prevention, and sacrificial anode effect, a method of production of the same, and a method of production of a heat exchanger using the fin material are provided, that is, an aluminum alloy fin material having a chemical composition of Si: 0.7 to 1.4 wt %, Fe: 0.5 to 1.4 wt %, Mn: 0.7 to 1.4 wt %, and Zn: 0.5 to 2.5 wt %, Mg as an impurity limited to 0.
    Type: Application
    Filed: June 8, 2007
    Publication date: December 17, 2009
    Inventors: Hideki Suzuki, Sasaki Tomohiro, Masae Nagasawa, Nobuki Takahashi