Patents by Inventor Masafumi Imai
Masafumi Imai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12215877Abstract: An air circulation device includes a suction section configured to suck indoor air, and a blower section configured to blow the air sucked by the suction section into a room. The air is in a form of a vortex ring. The air circulation device is operable in at least a first mode in which the vortex ring blown therefrom reaches a wall surface of the room.Type: GrantFiled: March 16, 2022Date of Patent: February 4, 2025Assignee: DAIKIN INDUSTRIES, LTD.Inventors: Masafumi Uda, Yousuke Imai, Keita Kawahara, Kiichirou Satou
-
Patent number: 10695940Abstract: There is provided a system 1 of manufacturing a corrugated board, including: a corrugated-shape processing apparatus 4 for processing a board in a corrugated shape by curving the board; a shaping apparatus 5 for adjusting a corrugated board acquired by processing the board in a corrugated shape; and a stabilizing apparatus 6 for stabilizing the corrugated board being shaped in the corrugated shape, the corrugated-shape processing apparatus 4 including a first pressing jig 25 and a second pressing jig 27 each of which is in a roller-like shape provided on its surface with asperities to press a board into a corrugated board, being disposed facing each other, the shaping apparatus 5 including: a third pressing jig 45 and a fourth pressing jig 48 each of which has a surface with asperities in which a distance between adjacent apexes of the asperities is substantially identical to that of a surface with asperities of the corrugated board; and a heater 59, the stabilizing apparatus 6 including a fifth pressing jigType: GrantFiled: February 28, 2017Date of Patent: June 30, 2020Assignee: IMAI INDUSTRY CO., LTD.Inventor: Masafumi Imai
-
Patent number: 10487169Abstract: A method for producing a propylene-based block copolymer produces a propylene-based copolymer that exhibits excellent stereoregularity, rigidity, and impact resistance in a convenient and efficient manner while achieving high polymerization activity. The method for producing a propylene-based block copolymer includes bringing a catalyst into contact with propylene, or propylene and an ?-olefin, and bringing an electron donor compound into contact with the resulting product to produce a propylene-based block copolymer, the catalyst including a solid catalyst component that includes titanium, magnesium, a halogen, and an internal electron donor compound, a specific organoaluminum compound, and a specific external electron donor compound.Type: GrantFiled: August 14, 2015Date of Patent: November 26, 2019Assignee: TOHO TITANIUM CO., LTD.Inventors: Masafumi Imai, Toshihiko Sugano, Toshiya Uozumi, Yuta Haga
-
Patent number: 10479856Abstract: A method for producing a propylene-based block copolymer produces a propylene-based copolymer that exhibits excellent stereoregularity, rigidity, and impact resistance in a convenient and efficient manner while achieving high polymerization activity. The method for producing a propylene-based block copolymer includes bringing a catalyst into contact with propylene, or propylene and an ?-olefin, and bringing an electron donor compound into contact with the resulting product to produce a propylene-based block copolymer, the catalyst including a solid catalyst component that includes titanium, magnesium, a halogen, and an internal electron donor compound, a specific organoaluminum compound, and a specific external electron donor compound.Type: GrantFiled: December 7, 2018Date of Patent: November 19, 2019Assignee: TOHO TITANIUM CO., LTD.Inventors: Masafumi Imai, Toshihiko Sugano, Toshiya Uozumi, Yuta Haga
-
Publication number: 20190112408Abstract: A method for producing a propylene-based block copolymer produces a propylene-based copolymer that exhibits excellent stereoregularity, rigidity, and impact resistance in a convenient and efficient manner while achieving high polymerization activity. The method for producing a propylene-based block copolymer includes bringing a catalyst into contact with propylene, or propylene and an ?-olefin, and bringing an electron donor compound into contact with the resulting product to produce a propylene-based block copolymer, the catalyst including a solid catalyst component that includes titanium, magnesium, a halogen, and an internal electron donor compound, a specific organoaluminum compound, and a specific external electron donor compound.Type: ApplicationFiled: December 7, 2018Publication date: April 18, 2019Applicant: TOHO TITANIUM CO., LTD.Inventors: Masafumi Imai, Toshihiko Sugano, Toshiya Uozumi, Yuta Haga
-
Publication number: 20190039259Abstract: There is provided a system 1 of manufacturing a corrugated board, including: a corrugated-shape processing apparatus 4 for processing a board in a corrugated shape by curving the board; a shaping apparatus 5 for adjusting a corrugated board acquired by processing the board in a corrugated shape; and a stabilizing apparatus 6 for stabilizing the corrugated board being shaped in the corrugated shape, the corrugated-shape processing apparatus 4 including a first pressing jig 25 and a second pressing jig 27 each of which is in a roller-like shape provided on its surface with asperities to press a board into a corrugated board, being disposed facing each other, the shaping apparatus 5 including: a third pressing jig 45 and a fourth pressing jig 48 each of which has a surface with asperities in which a distance between adjacent apexes of the asperities is substantially identical to that of a surface with asperities of the corrugated board; and a heater 59, the stabilizing apparatus 6 including a fifth pressing jigType: ApplicationFiled: February 28, 2017Publication date: February 7, 2019Inventor: Masafumi IMAI
-
Publication number: 20170240682Abstract: A method for producing a propylene-based block copolymer produces a propylene-based copolymer that exhibits excellent stereoregularity, rigidity, and impact resistance in a convenient and efficient manner while achieving high polymerization activity. The method for producing a propylene-based block copolymer includes bringing a catalyst into contact with propylene, or propylene and an ?-olefin, and bringing an electron donor compound into contact with the resulting product to produce a propylene-based block copolymer, the catalyst including a solid catalyst component that includes titanium, magnesium, a halogen, and an internal electron donor compound, a specific organoaluminum compound, and a specific external electron donor compound.Type: ApplicationFiled: August 14, 2015Publication date: August 24, 2017Applicant: TOHO TITANIUM CO., LTD.Inventors: Masafumi Imai, Toshihiko Sugano, Toshiya Uozumi, Yuta Haga
-
Patent number: 9222915Abstract: An eddy current flaw detection system includes an eddy current flaw detection probe having a substrate facing an inspection surface, and at least one exciting coil and at least two detecting coils provided on the substrate, a scanning device which scans the probe on the inspection surface, a scan control device which drives and controls the scanning device, an eddy current flaw detection device which acquires results of detection of a plurality of detection points corresponding to combinations of the exciting and detecting coils for each scan position of the probe, and a data processing/display device which processes data from the scan control device and the eddy current flaw detection device and thereby displays a result of flaw detection. The data processing/display device acquires three-dimensional coordinates of the detection points for each scan position of the probe and thereby creates three-dimensional flaw detection data.Type: GrantFiled: January 23, 2013Date of Patent: December 29, 2015Assignee: Hitachi-GE Nuclear Energy, Ltd.Inventors: Akira Nishimizu, So Kitazawa, Naoyuki Kono, Hisashi Endo, Kenichi Otani, Taiichiro Yamada, Hirofumi Ouchi, Isao Yoshida, Yoshio Nonaka, Masafumi Imai
-
Publication number: 20150016066Abstract: A circuit module includes a wiring substrate, an electronic component, a sealing layer, and a conductive shield. The wiring substrate has a mount surface. The electronic component is mounted on the mount surface. The sealing layer is formed of an insulating material, covers the electronic component, and has a first surface and a second surface, the first surface being opposite to the mount surface and having a first sealing area and a second sealing area, the second sealing area projecting from the first sealing area to an opposite side of the mount surface, the second surface being connected to the mount surface and the first surface. The conductive shield covers at least the second surface and the first sealing area of the first surface.Type: ApplicationFiled: February 27, 2014Publication date: January 15, 2015Applicant: Taiyo Yuden Co., Ltd.Inventors: Masaya SHIMAMURA, Eiji MUGIYA, Kenzo KITAZAKI, Takehiko KAI, Masafumi Imai, Atsushi ITO
-
Patent number: 8616062Abstract: In an ultrasonic inspection method or ultrasonic inspection system in which an ultrasonic wave is propagated to an test object via a medium such as a liquid or a gas, an incident position of the ultrasonic wave is accurately and reliably identified. In an ultrasonic inspection method based on an immersion technique, an optical irradiator is mounted on an ultrasonic wave transmitting/receiving unit, an optical marker is irradiated from the optical irradiator to the test object, and an irradiated position of the optical marker is imaged using imaging equipment in order to perform inspection.Type: GrantFiled: February 16, 2011Date of Patent: December 31, 2013Assignee: Hitachi-GE Nuclear Energy, Ltd.Inventors: Naoyuki Kono, Isao Yoshida, Masahiro Koike, Yoshio Nonaka, Hiroyuki Nakano, Kenichi Otani, Chihiro Matsuoka, Masafumi Imai
-
Publication number: 20110197679Abstract: In an ultrasonic inspection method or ultrasonic inspection system in which an ultrasonic wave is propagated to an test object via a medium such as a liquid or a gas, an incident position of the ultrasonic wave is accurately and reliably identified. In an ultrasonic inspection method based on an immersion technique, an optical irradiator is mounted on an ultrasonic wave transmitting/receiving unit, an optical marker is irradiated from the optical irradiator to the test object, and an irradiated position of the optical marker is imaged using imaging equipment in order to perform inspection.Type: ApplicationFiled: February 16, 2011Publication date: August 18, 2011Applicant: HITACHI-GE NUCLEAR ENERGY, LTD.Inventors: Naoyuki KONO, Isao YOSHIDA, Masahiro KOIKE, Yoshio NONAKA, Hiroyuki NAKANO, Kenichi OTANI, Chihiro MATSUOKA, Masafumi IMAI
-
Publication number: 20110057646Abstract: There is provided a position sensing apparatus when a non-orbital movable truck moves over a spherical surface, a cylindrical surface, or a flat surface, which is capable of position sensing even when, e.g., the non-orbital movable truck circumferentially moves over the spherical surface or the cylindrical surface to be hidden from the position sensing apparatus. A second linear encoder is disposed which includes a wire in a main body thereof to output an amount by which the wire is withdrawn as an encoder value. The tip of the wire of the second linear encoder is fixed to a position at the non-orbital movable truck to which the tip of the wire of a linear encoder is fixed. From an amount by which the wire of the linear encoder is withdrawn and the amount by which the wire of the second linear encoder is withdrawn, the position of the non-orbital movable truck is calculated in a calculation device.Type: ApplicationFiled: August 20, 2010Publication date: March 10, 2011Inventors: Yosuke Takatori, Yutaka Kometani, Kenichi Otani, Masafumi Imai, Ryoetsu Fujiwara
-
Patent number: 5610960Abstract: With an arrangement that the axial distance from the upper end of a first opening area to the upper end of the second opening area is equal to the axial distance from the upper end of a first coupling member to the upper end of a second coupling member, when a spring member is moved upwardly relative to round cells, the upper end of the second coupling member comes into contact with the upper end of the second opening area, and the spring members receives upwardly acting forces from fuel elements. The spring member is thereby prevented from inclining with respect to flow of a coolant. Simultaneously, the upper end of the first coupling member contacts the upper end of the first opening area, and the spring member is stably held in a condition where it is aligned with the direction of the coolant flow.Type: GrantFiled: August 24, 1995Date of Patent: March 11, 1997Assignee: Hitachi, Ltd.Inventors: Kensuke Tokunaga, Yasuhiro Aizawa, Junjiro Nakajima, Masana Sasaki, Masayoshi Ajima, Masafumi Imai
-
Patent number: 5132261Abstract: The present invention relates to a catalyst for the polymerization of olefins, and provides a catalyst component of magnesium support type which has a high catalytic activity as well as improved catalytic grain strength sufficient for practical use and which hardly deteriorates even after storage for a long time. The catalyst component is obtained by contacting(a) metallic magnesium with(b) a hydrocarbon represented by the general formula RX wherein R is a hydrocarbon group of 1 to 20 carbon atoms and X is a halogen atom, then contacting the resulting composition with(c) a compound represented by the general formula X.sup.1 nM(OR.sup.1).sub.m-n wherein X.sup.1 is a hydrogen atom, halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is a boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.gtoreq.0, and(d) a titanium alkoxide represented by the general formula Ti(OR.sup.2).sub.4 wherein R.sup.Type: GrantFiled: January 7, 1991Date of Patent: July 21, 1992Assignee: Tonen CorporationInventors: Masahide Murata, Hiroyuki Furuhashi, Seizaburo Kanazawa, Teruo Yashiro, Masafumi Imai, Akira Nakano
-
Patent number: 5130283Abstract: According to the present invention, there is provided a catalyst component of metal oxide support type which has a high catalytic activity, that is, a little catalyst residue in a polymer, as well as improved catalytic grain strength sufficient for practical use and which hardly deteriorates even after storage for a long time. The catalyst component is obtained by contacting(a) a metal oxide with(b) a dihydrocarbyl magnesium, then contacting the resulting composition with(c) a compound represented by the general formula X.sup.1 .sub.n M(OR.sup.1).sub.m-n wherein X.sup.1 is a hydrogen atom, halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is a boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.gtoreq.0, and(d) a titanium alkoxide represented by the general formula Ti(OR.sup.2).sub.4 wherein R.sup.Type: GrantFiled: January 7, 1991Date of Patent: July 14, 1992Assignee: Tonen CorporationInventors: Masahide Murata, Hiroyuki Furuhashi, Akira Nakano, Teruo Yashiro, Seizaburo Kanazawa, Masafumi Imai
-
Patent number: 5114896Abstract: This invention relates to a process for the production of a catalytic component for the polymerization of olefins, in particular, for the production of a catalytic component capable of exhibiting a high polymerization activity in the polymerization of olefins and giving a polymer containing less low molecular weight components in effective manner. This process is characterized by a process for the production of a catalytic component for the polymerization of olefins, which comprises contacting (a) metallic magnesium, (b) a halogenated hydrocarbon represented by the general formula RX wherein R is an alkyl group, ary group or cycloalkyl group having 1 to 20 carbon atoms and (c) a compound represented by the general formula X.sup.1.sub.n M(OR.sup.1).sub.m-n in which X.sup.1 is a hydrogen atom, a halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.Type: GrantFiled: April 29, 1991Date of Patent: May 19, 1992Assignee: Tonen CorporationInventors: Teruo Yashiro, Seizaburo Kanazawa, Akira Nakano, Masahide Murata, Masafumi Imai
-
Patent number: 5061667Abstract: A catalytic component for olefin polymerization, produced by a process which comprises causing (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX [wherein R stands for an alkyl group, an aryl group, or a cycloalkyl group each having 1 to 20 carbon atoms and X for a halogen atom], and (C) a compound represented by the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n [wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M for a boron, carbon, aluminum, silicon, or phorphorus atom, R.sup.1 stands for a hydrocarbon group having 1 to 20 carbon atoms, m for the valency of M, and m>n.gtoreq.Type: GrantFiled: August 29, 1990Date of Patent: October 29, 1991Assignee: Tog Nenryo Kogyo KK (Tonen Corporation)Inventors: Masahide Murata, Seizaburo Kanazawa, Hiroyuki Furuhashi, Kouji Maruyama, Masafumi Imai, Hiroshi Ueno
-
Patent number: 4960743Abstract: A method for the production of a catalyst carrier for use in the polymerization of an olefin, which method comprises causing a magnesium-containing solid obtained by contact of (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX [wherein R stands for an alkyl, aryl, or cycloalkyl group having 1 to 20 carbon atoms and X stands for a halogen atom], and (C) a compound of the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n [wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M stands for a boron, carbon, aluminum, silicon, or phosphorus atom, R.sup.1 stands for a hydrocarbon group having 1 to 20 carbon atoms, and m stands for the valency of said atom M, providing that m>n.gtoreq.0 is satisfied], to contact (D) a halogen-containing alcohol.Type: GrantFiled: November 18, 1988Date of Patent: October 2, 1990Assignee: Toa Nenryo Kogyo K.K.Inventors: Masahide Murata, Masafumi Imai, Hiroyuki Furuhashi, Kouji Maruyama, Hiroshi Ueno
-
Patent number: 4959427Abstract: A catalyst component for the polymerization of olefins which is prepared by contacting a reaction product of dihydrocarbyl magnesium and a halogen-containing alcohol held in contact with a titanium compound.Type: GrantFiled: May 12, 1986Date of Patent: September 25, 1990Assignee: Toa Nenryo Kogyo, K.K.Inventors: Hiroyuki Furuhashi, Tadashi Yamamoto, Masafumi Imai, Hiroshi Ueno
-
Patent number: 4950630Abstract: A method for the production of a catalyst component for use in the polymerization of an olefin, which method comprises causing a magnesium-containing solid obtained by contact of (A) magnesium metal, (B) a halogenated hydrocarbon represented by the general formula, RX [wherein R stands for an alkyl, aryl, or cycloalkyl group having 1 to 20 carbon atoms and X stands for a halogen atom], and (C) a compound of the general formula, X.sub.n.sup.1 M(OR.sup.1).sub.m-n [wherein X.sup.1 stands for a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms, M stands for a boron, carbon, aluminum, silicon, or phosphorus atom, R.sup.1 stands for a hydrocarbon group having 1 to 20 carbon atoms, and m stands for the valency of said atom M, providing that m>n.gtoreq.0 is satisfied], to contact (d) a halogen-containing alcohol and then contact (E) an electron donor type compound and (F) a titanium compound.Type: GrantFiled: November 18, 1988Date of Patent: August 21, 1990Assignee: Toa Nenryo Kogyo, K.K.Inventors: Masahide Murata, Masafumi Imai, Hiroyuki Furuhashi, Kouji Maruyama, Hiroshi Ueno