Patents by Inventor Masafumi Makino

Masafumi Makino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945438
    Abstract: A vehicle control apparatus includes: a follow-up-running control portion configured to execute a follow-up running control for causing a vehicle to run following a preceding vehicle with a target inter-vehicle distance; and a shift control portion configured to change a gear ratio of an automatic transmission in accordance with a predetermined shifting condition. The shift control portion is configured to set a high fluid-temperature determination value, based on information relating to the preceding vehicle that affects an air flow rate. When a fluid temperature of the automatic transmission is not lower than the high fluid-temperature determination value, the shift control portion is configured to change the shifting condition such that a higher-speed gear position making the gear ratio lower is more frequently established in the automatic transmission than when the fluid temperature of the automatic transmission is lower than the high fluid-temperature determination value.
    Type: Grant
    Filed: June 9, 2023
    Date of Patent: April 2, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koichi Okuda, Masafumi Yamamoto, Yoshito Sekiguchi, Yuuki Makino
  • Patent number: 8964414
    Abstract: A DC power supply including a resonant circuit on a secondary side of a transformer suppresses a surge voltage during power recovery of diodes constituting a rectifier circuit, correctly estimates a load current from a secondary current of the transformer, and adjusts supplied power when a load is light. The DC power supply includes a DC voltage source, a converter, a transformer, a rectifier circuit, a resonant circuit composed of a resonant switch and a resonant capacitor, a filter reactor, a filter capacitor, a snubber diode, a snubber capacitor, a load, first and second voltage sensors, a current sensor, and a controller for controlling gate pulses of semiconductor devices constituting a converter and the resonant switch and a signal for adjusting operation timings of A/D converters converting the signals of these sensors.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 24, 2015
    Assignees: Hitachi, Ltd., Hitachi Mito Engineering Co., Ltd.
    Inventors: Tetsuo Kojima, Yuichiro Nozaki, Masafumi Makino, Takeshi Shinomiya, Tetsu Sugiura
  • Patent number: 8922997
    Abstract: Semiconductor element groups constituting a unit are mounted on a cooler heat receiving part 1 on the same plane and are adapted to radiate heat by self-cooling or cooling by wind. First and fourth semiconductor elements Q1, Q4 are arranged on the lower side of the cooler heat receiving part, second and third semiconductor elements Q2, Q3 are arranged in the middle, a first diode D5 and a second diode D6 are arranged on the upper side, the first and second semiconductor elements Q1, Q2, as well as the third and fourth semiconductor elements Q3, Q4 are each arranged in positions opposite to each other in a horizontal direction with respect to a centerline of a cooler in a vertical direction.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: December 30, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takeshi Shinomiya, Yuichiro Nozaki, Masafumi Makino, Masaomi Konishide, Yasuhiko Kono, Tetsuo Kojima, Tetsu Sugiura
  • Patent number: 8787042
    Abstract: In a DC power supply in which a DC power source and a transformer are connected via a power conversion circuit and a secondary winding of the transformer is connected to a load via a rectifier diode bridge and a filter circuit to supply power to the load, a resonance reactor is provided on an output side of the transformer, a resonant switch circuit including a parallel circuit of a diode and a semiconductor switch and a resonant capacitor is connected in parallel to the rectifier diode bridge and a snubber circuit including a snubber capacitor, a snubber diode and a diode for discharge is connected to a serial resonant circuit including the resonance reactor and the resonant capacitor in the resonant switch circuit to absorb a surge voltage.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 22, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Yuichiro Nozaki, Tetsuo Kojima, Masafumi Makino
  • Publication number: 20120300501
    Abstract: A DC power supply including a resonant circuit on a secondary side of a transformer suppresses a surge voltage during power recovery of diodes constituting a rectifier circuit, correctly estimates a load current from a secondary current of the transformer, and adjusts supplied power when a load is light. The DC power supply includes a DC voltage source, a converter, a transformer, a rectifier circuit, a resonant circuit composed of a resonant switch and a resonant capacitor, a filter reactor, a filter capacitor, a snubber diode, a snubber capacitor, a load, first and second voltage sensors, a current sensor, and a controller for controlling gate pulses of semiconductor devices constituting a converter and the resonant switch and a signal for adjusting operation timings of A/D converters converting the signals of these sensors.
    Type: Application
    Filed: May 25, 2012
    Publication date: November 29, 2012
    Inventors: Tetsuo KOJIMA, Yuichiro NOZAKI, Masafumi MAKINO, Takeshi SHINOMIYA, Tetsu SUGIURA
  • Publication number: 20120224396
    Abstract: In a DC power supply in which a DC power source and a transformer are connected via a power conversion circuit and a secondary winding of the transformer is connected to a load via a rectifier diode bridge and a filter circuit to supply power to the load, a resonance reactor is provided on an output side of the transformer, a resonant switch circuit including a parallel circuit of a diode and a semiconductor switch and a resonant capacitor is connected in parallel to the rectifier diode bridge and a snubber circuit including a snubber capacitor, a snubber diode and a diode for discharge is connected to a serial resonant circuit including the resonance reactor and the resonant capacitor in the resonant switch circuit to absorb a surge voltage.
    Type: Application
    Filed: February 7, 2012
    Publication date: September 6, 2012
    Inventors: Yuichiro NOZAKI, Tetsuo Kojima, Masafumi Makino