Patents by Inventor Masafumi Miyake

Masafumi Miyake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200300809
    Abstract: The invention aims to suppress an effect of noise and heat generated from a memory on a measurement result in an ion concentration measuring device that uses an ion detection element for outputting a potential corresponding to the concentration of ions. The ion concentration measuring device according to the invention includes a cartridge having an ion detection element and a memory and supplies power to the memory in a time period excluding a time period for which the potential generated by the ion detection element is acquired.
    Type: Application
    Filed: February 4, 2019
    Publication date: September 24, 2020
    Inventors: Masafumi MIYAKE, Tetsuyoshi ONO, Satoshi OZAWA, Ukyo IKEDA
  • Publication number: 20180238829
    Abstract: The separation between an ion concentration measuring time period and an information read/write time period is not considered in existing devices. Therefore, in the present invention, the time period for retrieving information from a semiconductor memory mounted in a cartridge and the time period for measuring the concentration of ions are controlled so as not to overlap each other.
    Type: Application
    Filed: July 1, 2016
    Publication date: August 23, 2018
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Yoshito WATANABE, Satoshi OZAWA, Tetsuyoshi ONO, Masafumi MIYAKE
  • Patent number: 10018585
    Abstract: An electrolyte concentration measuring apparatus is provided with: a plurality of ion selective electrodes and one reference electrode; a sample introduction unit that introduces a sample solution to the plurality of ion selective electrodes and the reference electrode; a potential measuring unit that measures a voltage between the plurality of ion selective electrodes and the reference electrode; and a resistance measuring unit that measures a direct-current resistance of the plurality of ion selective electrodes.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: July 10, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yu Ishige, Masao Kamahori, Atsushi Kishioka, Tetsuyoshi Ono, Masafumi Miyake
  • Publication number: 20160054257
    Abstract: An electrolyte concentration measuring apparatus is provided with: a plurality of ion selective electrodes and one reference electrode; a sample introduction unit that introduces a sample solution to the plurality of ion selective electrodes and the reference electrode; a potential measuring unit that measures a voltage between the plurality of ion selective electrodes and the reference electrode; and a resistance measuring unit that measures a direct-current resistance of the plurality of ion selective electrodes.
    Type: Application
    Filed: April 10, 2014
    Publication date: February 25, 2016
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yu ISHIGE, Masao KAMAHORI, Atsushi KISHIOKA, Tetsuyoshi ONO, Masafumi MIYAKE
  • Patent number: 8394247
    Abstract: The present invention aims to simplify the structure and a fabrication method of an ion-selective electrode in an ion concentration measuring device that measures an anion, particularly a chloride ion, in a biological component. To this end, in a potential difference measuring unit, a quaternary ammonium salt derivative serving as a ligand for an anion is immobilized to the surface of a gold electrode by using as a linker an insulative molecule forming a self-assembled monolayer. The potential difference measuring unit measures an electromotive force generated with anion binding, as an interface potential change on the surface of the gold electrode. In order to reduce the influence of adsorption of impurities on the electrode surface, a high-molecular weight polymer is physically adsorbed on the gold electrode and thus used when a biological component is measured.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: March 12, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masao Kamahori, Yu Ishige, Kotaro Yamashita, Yasuhisa Shibata, Masafumi Miyake, Kuniaki Nagamine
  • Patent number: 8323468
    Abstract: A crown ether derivative that acts as cation capturing ligand and alkanethiol having a longer carbon chain than a linker are immobilized, coexisting together, on the surface of a gold electrode, by using as the linker an insulating molecule (e.g., alkanethiol) that forms self-assembled monolayers. Electromotive force produced in association with cation coordination is measured by a potentiometer through a change in interfacial potential on the surface of the gold electrode. Further, an insulated gate field effect transistor formed on the same substrate as the gold electrode is used as the potentiometer. Furthermore, a straight-chain polymer physically adsorbed on the gold electrode is used in order to reduce the influence of the adsorption of impurities on the surface of the electrode during biological sample measurement.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: December 4, 2012
    Assignee: Hitachi-High Technologies Corporation
    Inventors: Masao Kamahori, Yu Ishige, Kotaro Yamashita, Yasuhisa Shibata, Masafumi Miyake
  • Patent number: 7838631
    Abstract: The present invention provides a method of separating lipoproteins other than high density lipoproteins from a biological fluid. The method can quickly measure HDL cholesterol with a simple configuration and without the need of providing additional complicated devices. In this method, high density lipoproteins not generating any precipitate are fractionated from low density lipoproteins, very-low density lipoproteins, and chylomicrons generating precipitates. Then the precipitates are removed not by centrifugal separation based on the conventional technology, but by filtration using a filter to separate high density lipoproteins in blood serum. A hydrophilic cellulose-mixed ester is preferable as a material for the filter, and the pore diameter is 0.8 ?m or below. When the filtering method is employed, it is possible to eliminate the complicated operations required in the conventional centrifugal separation, and to shorten the time it takes for separation of the high density lipoproteins.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: November 23, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kotaro Yamashita, Masafumi Miyake
  • Publication number: 20090071826
    Abstract: The present invention aims to simplify the structure and a fabrication method of an ion-selective electrode in an ion concentration measuring device that measures an anion, particularly a chloride ion, in a biological component. To this end, in a potential difference measuring unit, a quaternary ammonium salt derivative serving as a ligand for an anion is immobilized to the surface of a gold electrode by using as a linker an insulative molecule forming a self-assembled monolayer. The potential difference measuring unit measures an electromotive force generated with anion binding, as an interface potential change on the surface of the gold electrode. In order to reduce the influence of adsorption of impurities on the electrode surface, a high-molecular weight polymer is physically adsorbed on the gold electrode and thus used when a biological component is measured.
    Type: Application
    Filed: August 19, 2008
    Publication date: March 19, 2009
    Inventors: Masao Kamahori, Yu Ishige, Kotaro Yamashita, Yasuhisa Shibata, Masafumi Miyake, Kuniaki Nagamine
  • Publication number: 20080312414
    Abstract: The present invention provides a method of separating lipoproteins other than high density lipoproteins from a biological fluid. The method can quickly measure HDL cholesterol with a simple configuration and without the need of providing additional complicated devices. In this method, high density lipoproteins not generating any precipitate are fractionated from low density lipoproteins, very-low density lipoproteins, and chylomicrons generating precipitates. Then the precipitates are removed not by centrifugal separation based on the conventional technology, but by filtration using a filter to separate high density lipoproteins in blood serum. A hydrophilic cellulose-mixed ester is preferable as a material for the filter, and the pore diameter is 0.8 ?m or below. When the filtering method is employed, it is possible to eliminate the complicated operations required in the conventional centrifugal separation, and to shorten the time it takes for separation of the high density lipoproteins.
    Type: Application
    Filed: June 2, 2008
    Publication date: December 18, 2008
    Inventors: Kotaro YAMASHITA, Masafumi Miyake
  • Publication number: 20080264790
    Abstract: A crown ether derivative that acts as cation capturing ligand and alkanethiol having a longer carbon chain than a linker are immobilized, coexisting together, on the surface of a gold electrode, by using as the linker an insulating molecule (e.g., alkanethiol) that forms self-assembled monolayers. Electromotive force produced in association with cation coordination is measured by a potentiometer through a change in interfacial potential on the surface of the gold electrode. Further, an insulated gate field effect transistor formed on the same substrate as the gold electrode is used as the potentiometer. Furthermore, a straight-chain polymer physically adsorbed on the gold electrode is used in order to reduce the influence of the adsorption of impurities on the surface of the electrode during biological sample measurement.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 30, 2008
    Inventors: Masao Kamahori, Yu Ishige, Kotaro Yamashita, Yasuhisa Shibata, Masafumi Miyake