Patents by Inventor Masaharu NISHIKINO

Masaharu NISHIKINO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913910
    Abstract: A measuring device for measuring an inspection target on the basis of vibration generated when the inspection target has been irradiated with laser light includes a condensing position deriving portion configured to derive an amount of adjustment of a distance between condensing lenses of a laser condensing unit configured to condense the laser light on the basis of a distance between a laser device configured to radiate the laser light and an irradiation location of the laser light and a communicating portion configured to transmit control information including information representing the amount of adjustment to the laser condensing unit.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: February 27, 2024
    Assignee: National Institutes for Quantum and Radiological Science and Technology
    Inventors: Katsuhiro Mikami, Toshiyuki Kitamura, Shuji Kondo, Hajime Okada, Tetsuya Kawachi, Yoshinori Shimada, Shinri Kurahashi, Masaharu Nishikino, Noboru Hasegawa
  • Patent number: 11737705
    Abstract: An implant installation strength evaluation method includes a step of vibrating an implant, a step of measuring time series data of the number of vibrations and vibration strengths of the implant vibrated in the vibrating step, and a step of deriving information indicating an index of an installation strength of the implant based on the time series data of the number of vibrations and vibration strengths of the implant.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: August 29, 2023
    Assignees: KEIO UNIVERSITY, NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICAL SCIENCE AND TECHNOLOGY
    Inventors: Daisuke Nakashima, Takeo Nagura, Masaharu Nishikino, Noboru Hasegawa, Katsuhiro Mikami, Toshiyuki Kitamura, Shuji Kondo, Hajime Okada, Yoshinori Shimada
  • Publication number: 20230258609
    Abstract: A measuring device for measuring an inspection target on the basis of vibration generated when the inspection target has been irradiated with laser light includes a condensing position deriving portion configured to derive an amount of adjustment of a distance between condensing lenses of a laser condensing unit configured to condense the laser light on the basis of a distance between a laser device configured to radiate the laser light and an irradiation location of the laser light and a communicating portion configured to transmit control information including information representing the amount of adjustment to the laser condensing unit.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 17, 2023
    Inventors: Masaharu Nishikino, Noboru Hasegawa, Katsuhiro Mikami, Toshiyuki Kitamura, Shuji Kondo, Hajime Okada, Tetsuya Kawachi, Yoshinori Shimada, Shinri Kurahashi
  • Patent number: 11674933
    Abstract: A measuring device for measuring an inspection target on the basis of vibration generated when the inspection target has been irradiated with laser light includes a condensing position deriving portion configured to derive an amount of adjustment of a distance between condensing lenses of a laser condensing unit configured to condense the laser light on the basis of a distance between a laser device configured to radiate the laser light and an irradiation location of the laser light and a communicating portion configured to transmit control information including information representing the amount of adjustment to the laser condensing unit.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 13, 2023
    Assignee: National Institutes for Quantum and Radiological Science and Technology
    Inventors: Masaharu Nishikino, Noboru Hasegawa, Katsuhiro Mikami, Toshiyuki Kitamura, Shuji Kondo, Hajime Okada, Tetsuya Kawachi, Yoshinori Shimada, Shinri Kurahashi
  • Publication number: 20230029156
    Abstract: This invention provides a pulse shaping technique that can yield a pulsed laser having a smaller energy fluctuation than that of a conventional pulse shaping technique using one or two non-linear optical crystals. A pulse shaping device includes: a non-linear optical crystal group including at least three non-linear optical crystals arranged side by side on an optical path of an input pulsed laser.
    Type: Application
    Filed: November 27, 2020
    Publication date: January 26, 2023
    Inventors: Masaharu NISHIKINO, Michiaki MORI, Thanhhung DINH, Sadaoki KOJIMA, Toshiyuki KITAMURA, Noboru HASEGAWA, Kiminori KONDO
  • Publication number: 20210247366
    Abstract: A measuring device for measuring an inspection target on the basis of vibration generated when the inspection target has been irradiated with laser light includes a condensing position deriving portion configured to derive an amount of adjustment of a distance between condensing lenses of a laser condensing unit configured to condense the laser light on the basis of a distance between a laser device configured to radiate the laser light and an irradiation location of the laser light and a communicating portion configured to transmit control information including information representing the amount of adjustment to the laser condensing unit.
    Type: Application
    Filed: March 27, 2019
    Publication date: August 12, 2021
    Inventors: Masaharu Nishikino, Noboru Hasegawa, Katsuhiro Mikami, Toshiyuki Kitamura, Shuji Kondo, Hajime Okada, Tetsuya Kawachi, Yoshinori Shimada, Shinri Kurahashi
  • Publication number: 20200205730
    Abstract: An implant installation strength evaluation method includes a step of vibrating an implant, a step of measuring time series data of the number of vibrations and vibration strengths of the implant vibrated in the vibrating step, and a step of deriving information indicating an index of an installation strength of the implant based on the time series data of the number of vibrations and vibration strengths of the implant.
    Type: Application
    Filed: September 13, 2018
    Publication date: July 2, 2020
    Applicants: KEIO UNIVERSITY, NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICAL SCIENCE AND TECHNOLOGY
    Inventors: Daisuke NAKASHIMA, Takeo NAGURA, Masaharu NISHIKINO, Noboru HASEGAWA, Katsuhiro MIKAMI, Toshiyuki KITAMURA, Shuji KONDO, Hajime OKADA, Yoshinori SHIMADA
  • Publication number: 20180137948
    Abstract: To suppress the breakage of a mirror for reflecting high-intensity EUV light, an EUV multilayer mirror presenting a Bragg diffraction effect is formed by a pile of a plurality of heavy-element layers (102) and a plurality of light-element layers (103) disposed on a substrate (101), wherein the light-element layers and the heavy-element layers are alternately deposited. The heavy-element layers (102) contain niobium as a main component, and the light-element layers (103) contain silicon as a main component. For example, the heavy-element layers (102) made of niobium and the light-element layers (103) made of silicon are alternately deposited on the substrate (101) made of single-crystal silicon.
    Type: Application
    Filed: July 20, 2016
    Publication date: May 17, 2018
    Inventors: Satoshi ICHIMARU, Masatoshi HATAYAMA, Masaharu NISHIKINO, Masahiko ISHINO