Patents by Inventor Masaharu Shimizu
Masaharu Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12220457Abstract: The present invention is directed to provide a modified CMV gB protein that can induce a group of antibodies including a high ratio of neutralizing antibodies that exhibit a high neutralizing activity against a CMV gB protein, in comparison with a wild type CMV gB, upon induction of immunity and that can be used in the prevention and/or treatment of CMV infection and a CMV vaccine comprising the modified CMV gB protein. The modified CMV gB protein according to the present invention is a modified CMV gB protein having an improved ability to induce body region-recognizing antibodies and comprising modification in a head region.Type: GrantFiled: October 24, 2019Date of Patent: February 11, 2025Assignee: KM Biologics Co., Ltd.Inventors: Masaharu Torikai, Hiroaki Mori, Tomohiro Nishimura, Miyuki Matsumoto, Hiroyuki Shimizu, Akihiro Koube, Takamasa Nagatomo, Naoki Inoue
-
Patent number: 11707850Abstract: An objective of the present invention is to reduce the downtime which occurs when changing a servo motor device. A servo motor device includes a motor section and a reduction gear configured to output a driving force by reducing a speed of rotation of the motor section, wherein a control device includes a detecting section configured to acquire detected information about operation of the motor section, and a computing section configured to generate an approximate curve based on a behavior for a time sequence of a parameter and to calculate predicted lifetime information of the servo motor device based on the approximate curve thus generated, wherein the parameter has been calculated by means of the detected information.Type: GrantFiled: July 26, 2021Date of Patent: July 25, 2023Assignees: Futaba Corporation, Chiba Institute of TechnologyInventors: Shotaro Kudo, Yasuyuki Suzuki, Toru Kono, Ryosei Kuramoto, Hidetoshi Muramatsu, Takayuki Furuta, Masaharu Shimizu, Hideaki Yamato
-
Patent number: 11409306Abstract: Provided is a movement robot configured so that various types of operation can be executed according to motion of other objects or a movement body and a utilization area can be expanded accordingly. The movement robot includes a robot body 1, a control unit 2, a traveling unit 3, and a detection unit 4.Type: GrantFiled: August 14, 2018Date of Patent: August 9, 2022Assignee: CHIBA INSTITUTE OF TECHNOLOGYInventors: Masahiro Tomono, Kiyoshi Irie, Hideaki Yamato, Masaharu Shimizu, Shunji Yamanaka, Takayuki Furuta
-
Publication number: 20220113732Abstract: Provided are an information processing apparatus and a mobile robot configured so that influence of a change in the posture of a mobile body can be reduced and the accuracy of measurement of a distance to a target object can be improved. A mobile robot 1 includes a control section 2 configured to drivably control each unit of a robot body 1A, a detection section 3 configured to detect a target object around the robot body 1A, and a mobile section 4 configured to move the robot body 1A. The detection section 3 includes first distance sensors 31 configured to detect distances to first positions P1 on a floor surface F in a movement direction D1 of the robot body 1A and second distance sensors 32 configured to detect distances to second positions P2.Type: ApplicationFiled: September 25, 2018Publication date: April 14, 2022Inventors: Tomoaki YOSHIDA, Takayuki FURUTA, Hideaki YAMATO, Kiyoshi IRIE, Takaaki MATSUZAWA, Masaharu SHIMIZU
-
Publication number: 20220083067Abstract: A mobile robot 1 includes: a control means 2 for controlling the drive of each unit of a robot body 1A; a detection means 3 for detecting a target object around the robot body 1A; and a travel means 4 for moving the robot body 1A. The control means 2 determines a change in the environment by: obtaining two first measurement value groups S11 and S12 obtained by detecting the distances to different positions P1 and P2 in an environment at intervals of a predetermined time with the travel of the mobile robot 1; and processing the first measurement value groups, generating two second measurement value groups S21 and S22 according to the travel distance of the mobile robot 1, and comparing the generated second measurement value groups S21 and S22.Type: ApplicationFiled: December 17, 2018Publication date: March 17, 2022Inventors: Tomoaki YOSHIDA, Takayuki FURUTA, Hideaki YAMATO, Kiyoshi IRIE, Takaaki MATSUZAWA, Masaharu SHIMIZU
-
Publication number: 20220024049Abstract: An objective of the present invention is to reduce the downtime which occurs when changing a servo motor device. A servo motor device includes a motor section and a reduction gear configured to output a driving force by reducing a speed of rotation of the motor section, wherein a control device includes a detecting section configured to acquire detected information about operation of the motor section, and a computing section configured to generate an approximate curve based on a behavior for a time sequence of a parameter and to calculate predicted lifetime information of the servo motor device based on the approximate curve thus generated, wherein the parameter has been calculated by means of the detected information.Type: ApplicationFiled: July 26, 2021Publication date: January 27, 2022Inventors: Shotaro KUDO, Yasuyuki SUZUKI, Toru KONO, Ryosei KURAMOTO, Hidetoshi MURAMATSU, Takayuki FURUTA, Masaharu SHIMIZU, Hideaki YAMATO
-
Publication number: 20210370498Abstract: The present invention provides a main body with a coupling section, wherein the circuit board includes terminals for power supply and for signal, wherein the coupling section has a first positioning section and a second positioning section, and wherein the assembly is configured so that in a state where positioning has been performed by the first positioning section, positioning by the second positioning section is performed and the coupling section is coupled to another coupling section of another main body. Thus, coupling the coupling section is performed in the state where positioning has been performed, wherein connection of the terminals for power supply and for signal to power supply and signal terminal sections is performed in this state, which may enable the operability for coupling a coupling section to be improved while ensuring a mechanically and electrically correct coupled state.Type: ApplicationFiled: May 25, 2021Publication date: December 2, 2021Inventors: Shotaro KUDO, Yasuyuki SUZUKI, Toru KONO, Ryosei KURAMOTO, Hidetoshi MURAMATSU, Takayuki FURUTA, Masaharu SHIMIZU, Hideaki YAMATO, Yuu OKUMURA
-
Publication number: 20210365040Abstract: Provided is a movement robot configured so that various types of operation can be executed according to motion of other objects or a movement body and a utilization area can be expanded accordingly. The movement robot includes a robot body 1, a control unit 2, a traveling unit 3, and a detection unit 4.Type: ApplicationFiled: August 14, 2018Publication date: November 25, 2021Inventors: Masahiro TOMONO, Kiyoshi IRIE, Hideaki YAMATO, Masaharu SHIMIZU, Shunji YAMANAKA, Takayuki FURUTA
-
Publication number: 20210137342Abstract: Provided is a self-propelled vacuum configured so that obstacle avoidance operation can be efficiently performed and cleaning time can be shortened. A self-propelled vacuum 1 includes a laser range finder (LRF) 20 configured to sense the periphery of a vacuum body 2, and an up-down drive unit 22 configured to move the LRF 20 up and down between a protrusion position above the vacuum body 2 and a housing position in the vacuum body 2. The up-down drive unit 22 is driven to move the LRF 20 up and down.Type: ApplicationFiled: June 7, 2017Publication date: May 13, 2021Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200405115Abstract: An autonomous vacuum cleaner is provided which can promote reductions in size and load by simplifying the structure of a surrounding cleaning means. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) having a wheel (121) for travelling autonomously, and a pivoting cleaner (3) that can vacuum and clean around the vacuum cleaner body (2). The pivoting cleaner (3) is configured including: an arm (21) that can pivot outward from the vacuum cleaner body (2); a vacuum inlet (74) that is provided to the arm (21) to suck up dirt and the like on the floor surface; a rotation support (61, 144) configured to rotatably support the arm (21) on the vacuum cleaner body (2); and a vacuum channel (66) that is provided along a rotation axis of the rotation support (61, 144) to cause the inside of the arm (21) and a sub-duct (143) to communicate with each other.Type: ApplicationFiled: September 4, 2017Publication date: December 31, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200405110Abstract: An autonomous vacuum cleaner is provided which can clean efficiently around a vacuum cleaner body. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) having a wheel (121) for travelling autonomously, a surroundings sensor (32) for detecting an obstacle around the vacuum cleaner body (2), a pivoting cleaner (3) that can clean around the vacuum cleaner body (2), and a controller (5) that controls the surroundings sensor (32) and the pivoting cleaner (3). The pivoting cleaner (3) includes an arm (21) that protrudes outward from the vacuum cleaner body (2), a motor (22) that drives the arm (21), and a load sensor (23) that detects a load acting on the arm (21) from the outside. The motor (22) is controlled and driven on the basis of the presence or absence of an obstacle detected by the surroundings sensor (32), and travel of the vacuum cleaner body (2) is controlled on the basis of a load detected by the load sensor (23).Type: ApplicationFiled: September 4, 2017Publication date: December 31, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200345191Abstract: An autonomous vacuum cleaner is provided which allows a user to check the operating state of a vacuum cleaner body and a map to be created, and can increase cleaning efficiency. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) and a mobile terminal (6). Whenever the vacuum cleaner body 2 acquires surrounding information and location information while travelling autonomously, a map creator (471) creates a map of a cleaning target space including the vacuum cleaner body (2) in real time, and a map display (61) of the mobile terminal (6) displays the map.Type: ApplicationFiled: November 16, 2017Publication date: November 5, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200275815Abstract: An autonomous vacuum cleaner that can reduce the footprint in a standby state is provided. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) and a charging station (6). The charging station (6) has a hook (64) that latches a latched member (16) provided to a rear side of the vacuum cleaner body (2), and a lift driver (61) that raises and lowers the hook (64), and is configured to be capable of storing the vacuum cleaner body (2) in a standing state where the vacuum cleaner body (2) is hoisted and the rear side is oriented upward.Type: ApplicationFiled: September 13, 2017Publication date: September 3, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200245837Abstract: An autonomous vacuum cleaner is provided which can accurately acquire surrounding information related to target objects in the surroundings. An autonomous vacuum cleaner (1) includes: a vacuum cleaner body (2); a front sensor (31) configured to detect a target object at a far distance from the vacuum cleaner body (2); and a contact sensor (32) configured to detect a target object at a near distance from the vacuum cleaner body (2). A controller (5) is configured including a surrounding information generator (45) configured to generate surrounding information related to target objects around the vacuum cleaner body (2), on the basis of far information detected by the front sensor (31) and near information detected by the contact sensor (32).Type: ApplicationFiled: October 13, 2017Publication date: August 6, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200089249Abstract: Provided is a self-propelled vacuum configured so that depending on an obstacle, the self-propelled vacuum can move over the obstacle without performing avoidance operation to shorten cleaning time. A self-propelled vacuum 1 includes a vacuum body 2, a suction unit 5 for sucking dust and the like on a floor surface F, a traveling drive unit 4 configured to drive wheels 21, a front sensor 51 configured to sense an obstacle S in the front in a traveling direction, and a vehicle height adjustment unit 6 configured to move the wheels 21 up and down to adjust the vehicle height of the vacuum body 2. In a case where the traveling drive unit 4 is driven and the front sensor 51 senses the obstacle S during self-propelling, the vehicle height adjustment unit 6 increases the vehicle height to a predetermined height, and thereafter, the self-propelled vacuum 1 moves over the obstacle S while the vehicle height is being adjusted such that a distance to the obstacle S is held within a predetermined range.Type: ApplicationFiled: June 7, 2017Publication date: March 19, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Patent number: 9636265Abstract: A single passenger carrying mobile robot, includes a single operated member that is operated by a passenger to instruct both a moving direction and a moving speed of the passenger carrying mobile robot, a moving member configured to move the passenger carrying mobile robot and a controller configured to control the moving member based on input information input to the operated member by the passenger, wherein the passenger carrying mobile robot further includes a sensor that acquires obstacle information of a surrounding of the passenger carrying mobile robot, and the controller predicts an expected course of the passenger carrying mobile robot based on the input information and determines based on the obstacle information whether or not an obstacle is located in the expected course, and changes a control of the moving member when determining that the obstacle is located.Type: GrantFiled: March 2, 2015Date of Patent: May 2, 2017Assignees: Chiba Institute Of Technology, Aisin Seiki Kabushiki KaishaInventors: Takayuki Furuta, Masaharu Shimizu, Hideaki Yamato, Kengo Toda, Takashi Kodachi, Mitsuhiro Ando, Noboru Nagamine, Seongjun Yang, Hirotoshi Ochiai, Wataru Takayanagi
-
Patent number: 9570891Abstract: A piston rod (15) and a first piston (13) are arranged in the interior of an external cylinder (11) and internal cylinder (12); a second piston for absorbing the change of volume of operating fluid (24) is also arranged therein. Also, a first return spring (18) for returning the piston rod (15) to the interruption position is provided and a second return spring (20) for returning the operating fluid 24 into the high-pressure chamber (25) by pressurizing the second piston (14) is provided. In addition, the air in the interior of the buffering device (10) is withdrawn by a vacuum pump (38), and operating fluid (24) is thus introduced in a degassed condition.Type: GrantFiled: August 15, 2014Date of Patent: February 14, 2017Assignee: Kabushiki Kaisha ToshibaInventors: Yoshiaki Ohda, Yoshikata Kobayashi, Masaharu Shimizu, Satoshi Marushima, Hirokazu Takagi, Tooru Inoue
-
Patent number: 9349554Abstract: A switchgear operating mechanism has: a ratchet wheel that rotates together with a closing shaft; a stop lever that enables contact between an energy storing cam and a roller; a motor that transmits power to a feed lever; a feed pawl; stop pawls that suppresses reverse rotation of the feed pawl; a closing lever that expands/contracts a closing spring; a catch mechanism for energy storage for the closing lever; a closing cam; a stopper unit that suppresses rotation of the stop lever; a first sprocket; second and third sprockets that are capable of rotating together with an intermediate shaft; a fourth sprocket rotatably fastened to an energy storing cam shaft; a first chain that engages with the first and second sprockets; and a second chain that engages with the third and fourth sprockets.Type: GrantFiled: May 30, 2014Date of Patent: May 24, 2016Assignee: Kabushiki Kaisha ToshibaInventors: Yoshiaki Ohda, Tatsuya Watanabe, Yoshikata Kobayashi, Masaharu Shimizu, Satoshi Marushima
-
Patent number: 9178339Abstract: A piston rod (15) and a first piston (13) are arranged in the interior of an external cylinder (11) and internal cylinder (12); a second piston for absorbing the change of volume of operating fluid (24) is also arranged therein. Also, a first return spring (18) for returning the piston rod (15) to the interruption position is provided and a second return spring (20) for returning the operating fluid 24 into the high-pressure chamber (25) by pressurizing the second piston (14) is provided. In addition, the air in the interior of the buffering device (10) is withdrawn by a vacuum pump (38), and operating fluid (24) is thus introduced in a degassed condition.Type: GrantFiled: August 15, 2014Date of Patent: November 3, 2015Assignee: KABUSHIKI KAISHA TOSHIBAInventors: Yoshiaki Ohda, Yoshikata Kobayashi, Masaharu Shimizu, Satoshi Marushima, Hirokazu Takagi, Tooru Inoue
-
Patent number: 9142941Abstract: A piston rod (15) and a first piston (13) are arranged in the interior of an external cylinder (11) and internal cylinder (12); a second piston for absorbing the change of volume of operating fluid (24) is also arranged therein. Also, a first return spring (18) for returning the piston rod (15) to the interruption position is provided and a second return spring (20) for returning the operating fluid 24 into the high-pressure chamber (25) by pressurizing the second piston (14) is provided. In addition, the air in the interior of the buffering device (10) is withdrawn by a vacuum pump (38), and operating fluid (24) is thus introduced in a degassed condition.Type: GrantFiled: August 15, 2014Date of Patent: September 22, 2015Assignee: KABUSHIKI KAISHA TOSHIBAInventors: Yoshiaki Ohda, Yoshikata Kobayashi, Masaharu Shimizu, Satoshi Marushima, Hirokazu Takagi, Tooru Inoue