Patents by Inventor Masahide Iwasaki

Masahide Iwasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100101728
    Abstract: A disclosed a plasma process apparatus includes a process chamber that houses a substrate subjected to a predetermined plasma process and may be evacuated to a reduced pressure; a microwave generator that generates microwaves for generating plasma; a waveguide pipe that transmits the microwaves from the microwave generator to the process chamber; a waveguide pipe/coaxial pipe converter connected to one end of the waveguide pipe; and a coaxial pipe that forms a line through which the microwaves are transmitted from the waveguide pipe-coaxial pipe converter to the process chamber. An inner conductive body of the coaxial pipe has a hollow portion; and a first process gas supplying portion that supplies a process gas into the process chamber through the hollow portion of the inner conductive body of the coaxial pipe.
    Type: Application
    Filed: March 28, 2008
    Publication date: April 29, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Masahide Iwasaki
  • Patent number: 7419567
    Abstract: A plasma processing apparatus includes a worktable in a process chamber to horizontally place a target substrate thereon. A plasma generation space is defined above and around the worktable within the process chamber. The plasma generation space includes a peripheral plasma region and a main plasma region respectively located outside and inside an outer edge of the target substrate placed on the worktable. The apparatus further includes a magnetic field forming mechanism configured to form first, second, and third magnetic fields within the peripheral plasma region. The first magnetic field includes magnetic force lines extending along a vertical first cylindrical plane. The second magnetic field includes magnetic force lines extending along a vertical second cylindrical plane located inside the first cylindrical plane. The third magnetic field includes magnetic force lines extending along vertical radial planes located between the first and second cylindrical planes.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: September 2, 2008
    Assignees: Tokyo Electron Limited, Shin-Etsu Chemical Co., Ltd.
    Inventors: Masahide Iwasaki, Koji Miyata
  • Publication number: 20060219360
    Abstract: A device for controlling a temperature of a mounting table for mounting thereon a target object includes a first and a second coolant passageway provided at the mounting table, a coolant circulator for circulating a coolant in the first and the second coolant passageway, channels, a coolant temperature controller for raising or lowering the temperature of the coolant, a channel switching unit for connecting, blocking and changing the channels among a first to a fourth port; and a channel controller. Various modes for controlling a temperature of the mounting table can be obtained by combining an ON/OFF state of the heating operation in the coolant temperature controller with ON/OFF states of opening/closing valves in the channel switching unit under the control of the channel controller.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 5, 2006
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Masahide Iwasaki
  • Publication number: 20050224344
    Abstract: A plasma processing apparatus includes a worktable in a process chamber to horizontally place a target substrate thereon. A plasma generation space is defined above and around the worktable within the process chamber. The plasma generation space includes a peripheral plasma region and a main plasma region respectively located outside and inside an outer edge of the target substrate placed on the worktable. The apparatus further includes a magnetic field forming mechanism configured to form first, second, and third magnetic fields within the peripheral plasma region. The first magnetic field includes magnetic force lines extending along a vertical first cylindrical plane. The second magnetic field includes magnetic force lines extending along a vertical second cylindrical plane located inside the first cylindrical plane. The third magnetic field includes magnetic force lines extending along vertical radial planes located between the first and second cylindrical planes.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 13, 2005
    Inventors: Masahide Iwasaki, Koji Miyata
  • Publication number: 20050224337
    Abstract: A plasma processing apparatus includes a worktable in a process chamber to horizontally place a target substrate thereon. A plasma generation space is defined above and around the worktable within the process chamber. The plasma generation space includes a peripheral plasma region and a main plasma region respectively located outside and inside an outer edge of the target substrate placed on the worktable. The apparatus further includes a magnetic field forming mechanism configured to form a magnetic field within the peripheral plasma region. The magnetic field includes magnetic force lines extending through the peripheral plasma region between a start position and an end position, at least one of which is located radially inside a sidewall of the process chamber.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 13, 2005
    Inventors: Masahide Iwasaki, Tomoaki Ukei
  • Publication number: 20040154540
    Abstract: A plasma processing unit of the present invention includes a processing container whose inner pressure can be reduced, a first electrode arranged in the processing container, a process gas supplying unit that supplies a process gas into the processing container, a high-frequency electric power source that outputs high-frequency electric power having a frequency in a VHF band, a matching unit electrically connected to the high-frequency electric power source and the first electrode for impedance matching, and a transmission line that transmits the high-frequency electric power from the high-frequency electric power source to the matching unit. A substrate to be processed is adapted to be arranged in the processing container. The high-frequency electric power transmitted to the first electrode is adapted to generate plasma in such a manner that the substrate to be processed can undergo a plasma process by means of the plasma.
    Type: Application
    Filed: February 11, 2004
    Publication date: August 12, 2004
    Inventors: Toshihiro Hayami, Masahide Iwasaki, Junichi Takahira, Kazuyoshi Watanabe, Shinichi Komatsu, Yuichi Sasaki
  • Patent number: 6367429
    Abstract: An intermediate fluid type vaporizer is provided which employs a heat source fluid capable of providing a relatively large temperature difference utilizable for vaporization, and which can make an overall size of the vaporizer more compact. The intermediate fluid type vaporizer comprises an intermediate fluid evaporator constructed by providing heat source tubes in a shell, which contains an intermediate fluid therein, to evaporate the intermediate fluid of liquid phase with heat exchange between the heat source fluid and the liquid intermediate fluid, and a liquefied gas evaporator constructed by providing heat transfer tubes in the shell to evaporate liquefied gas with heat exchange between the liquefied gas and the evaporated intermediate fluid. The heat source tubes are formed by straight tubes arranged so as to constitute two or more passes.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: April 9, 2002
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Masahide Iwasaki, Kazuhiko Asada
  • Publication number: 20010008126
    Abstract: An intermediate fluid type vaporizer is provided which employs a heat source fluid capable of providing a relatively large temperature difference utilizable for vaporization, and which can make an overall size of the vaporizer more compact. The intermediate fluid type vaporizer comprises an intermediate fluid evaporator constructed by providing heat source tubes in a shell, which contains an intermediate fluid therein, to evaporate the intermediate fluid of liquid phase with heat exchange between the heat source fluid and the liquid intermediate fluid, and a liquefied gas evaporator constructed by providing heat transfer tubes in the shell to evaporate liquefied gas with heat exchange between the liquefied gas and the evaporated intermediate fluid. The heat source tubes are formed by straight tubes arranged so as to constitute two or more passes.
    Type: Application
    Filed: January 17, 2001
    Publication date: July 19, 2001
    Applicant: Kabushiki Kaisha Kobe Seiko Sho.
    Inventors: Masahide Iwasaki, Kazuhiko Asada
  • Patent number: 6164247
    Abstract: An intermediate fluid type vaporizer has an intermediate fluid evaporator for containing an intermediate fluid. The intermediate fluid evaporator includes heat source tubes for evaporating the intermediate fluid, and a low-temperature liquid evaporating section for evaporating a low-temperature liquid by exchanging heat between the low-temperature liquid and the evaporated intermediate fluid. In the intermediate fluid evaporator, members for dividing the intermediate fluid, and cover plates for covering both ends of the intermediate fluid level from above are provided to prevent the intermediate fluid level from changing due to the shaking of the intermediate fluid evaporator itself. This vaporizer and an LNG tank are mounted on a ship so as to vaporize LNG in the ship and to supply the LNG to an onshore consumer.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: December 26, 2000
    Assignee: Kabushiki Kaishi Kobe Seiko Sho
    Inventors: Masahide Iwasaki, Shinji Egashira, Tsuyoshi Oda, Kazuhiko Asada, Kuniteru Sugino