Patents by Inventor Masahide Okazaki

Masahide Okazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9575389
    Abstract: A first electro-optic crystal substrate and a second electro-optic crystal substrate are provided as an electro-optic crystal substrate. The first electro-optic crystal substrate comprises a first periodic polarization reversal structure in which first polarization pairs, in each of which the directions of polarization in response to electric fields are opposite to each other, are arranged in a first period along a first arrangement direction which is orthogonal or inclined with respect to the direction of propagation, and light passes through the first periodic polarization reversal structure.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: February 21, 2017
    Assignees: Screen Holdings Co., Ltd., Osaka University
    Inventors: Masahide Okazaki, Toshiaki Suhara
  • Publication number: 20150070676
    Abstract: A first electro-optic crystal substrate and a second electro-optic crystal substrate are provided as an electro-optic crystal substrate. The first electro-optic crystal substrate comprises a first periodic polarization reversal structure in which first polarization pairs, in each of which the directions of polarization in response to electric fields are opposite to each other, are arranged in a first period along a first arrangement direction which is orthogonal or inclined with respect to the direction of propagation, and light passes through the first periodic polarization reversal structure.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 12, 2015
    Inventors: Masahide OKAZAKI, Toshiaki Suhara
  • Patent number: 8784675
    Abstract: The ferroelectric substrate 11 of ferroelectric crystals, while being supported by the support plate 14 which is thicker than the ferroelectric substrate 11, is integrated with the support plate 14 by letting the junction 13 mediate between one major surface S1A of the ferroelectric substrate 11 and one major surface S1B of the support plate 14, and therefore, it is possible through the flat surface polishing to perform thinning of the ferroelectric substrate 11, namely, the ferroelectric crystals, and as a result, it is possible to obtain the thin periodically poled structure. By the voltage application method, the domain inverted region is formed in the ferroelectric substrate 11 which is made thin.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: July 22, 2014
    Assignee: Dainippon Screen Mfg. Co. Ltd.
    Inventors: Masahide Okazaki, Toshiaki Suhara
  • Patent number: 8773751
    Abstract: As a spatial light modulator 35 is disposed between a wavelength conversion part 315 and an exit surface 311b in a ferroelectric crystal substrate 31, only zeroth-order light which is at a particular wavelength is guided to a substrate while laser light from the wavelength conversion part 315 is being modulated, whereby a pattern corresponding to LSI data is drawn. Further, the spatial light modulator 35 is disposed together with the wavelength conversion parts 314 and 315 inside the ferroelectric crystal substrate 31.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: July 8, 2014
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Masahide Okazaki, Toshiaki Suhara
  • Publication number: 20120182535
    Abstract: As a spatial light modulator 35 is disposed between a wavelength conversion part 315 and an exit surface 311b in a ferroelectric crystal substrate 31, only zeroth-order light which is at a particular wavelength is guided to a substrate while laser light from the wavelength conversion part 315 is being modulated, whereby a pattern corresponding to LSI data is drawn. Further, the spatial light modulator 35 is disposed together with the wavelength conversion parts 314 and 315 inside the ferroelectric crystal substrate 31.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 19, 2012
    Inventors: Masahide OKAZAKI, Toshiaki SUHARA
  • Patent number: 8175422
    Abstract: In an optical modulator, a first electrode portion having a plurality of first electrodes is provided on the upper surface of a base part having a periodically-poled structure and a second electrode portion is provided on the lower surface thereof, and voltage is applied in one direction between the first electrode portion and the second electrode portion, to thereby cause a periodic change of the refractive index in a polarization-part array direction in the periodically-poled structure and diffract light which enters the base part. This allows reduction in the voltage applied between the first electrode portion and the second electrode portion, and it is thereby possible to form a desired electric field inside the periodically-poled structure while achieving a high-density channel arrangement. By reducing the voltage, the rate of the optical modulation performed by the optical modulator can be increased.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: May 8, 2012
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Masahide Okazaki, Toshiaki Suhara
  • Publication number: 20120081772
    Abstract: The ferroelectric substrate 11 of ferroelectric crystals, while being supported by the support plate 14 which is thicker than the ferroelectric substrate 11, is integrated with the support plate 14 by letting the junction 13 mediate between one major surface S1A of the ferroelectric substrate 11 and one major surface S1B of the support plate 14, and therefore, it is possible through the flat surface polishing to perform thinning of the ferroelectric substrate 11, namely, the ferroelectric crystals, and as a result, it is possible to obtain the thin periodically poled structure. By the voltage application method, the domain inverted region is formed in the ferroelectric substrate 11 which is made thin.
    Type: Application
    Filed: August 9, 2011
    Publication date: April 5, 2012
    Inventors: Masahide OKAZAKI, Toshiaki Suhara
  • Publication number: 20100166356
    Abstract: In an optical modulator, a first electrode portion having a plurality of first electrodes is provided on the upper surface of a base part having a periodically-poled structure and a second electrode portion is provided on the lower surface thereof, and voltage is applied in one direction between the first electrode portion and the second electrode portion, to thereby cause a periodic change of the refractive index in a polarization-part array direction in the periodically-poled structure and diffract light which enters the base part. This allows reduction in the voltage applied between the first electrode portion and the second electrode portion, and it is thereby possible to form a desired electric field inside the periodically-poled structure while achieving a high-density channel arrangement. By reducing the voltage, the rate of the optical modulation performed by the optical modulator can be increased.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 1, 2010
    Inventors: Masahide OKAZAKI, Toshiaki SUHARA
  • Patent number: 7643047
    Abstract: An optical unit array comprises a plurality of optical units (2) in each of which a plurality of light source modules (1) are arranged and a first comb-teeth member (41) and a second comb-teeth member (42) which are provided for holding the optical units (2), and respective first pins (213) and second pins (214) of a plurality of optical units (2) are held by the first comb-teeth member (41) and the second comb-teeth member (42). In the optical unit array (4), positions of a plurality of optical units (2) relative to one another can be determined with high accuracy by bringing the first pins (213) and the second pins (214) into contact with grooves (411) and grooves (421), respectively. The outgoing positions and directions of light beams emitted from the light source modules (1) are also determined with high accuracy in each optical unit (2).
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: January 5, 2010
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Masahide Okazaki
  • Patent number: 7436422
    Abstract: An optical unit array comprises a plurality of optical units (2) in each of which a plurality of light source modules (1) are arranged and a first comb-teeth member (41) and a second comb-teeth member (42) which are provided for holding the optical units (2), and respective first pins (213) and second pins (214) of a plurality of optical units (2) are held by the first comb-teeth member (41) and the second comb-teeth member (42). In the optical unit array (4), positions of a plurality of optical units (2) relative to one another can be determined with high accuracy by bringing the first pins (213) and the second pins (214) into contact with grooves (411) and grooves (421), respectively. The outgoing positions and directions of light beams emitted from the light source modules (1) are also determined with high accuracy in each optical unit (2).
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: October 14, 2008
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Masahide Okazaki
  • Publication number: 20070097200
    Abstract: An optical unit array comprises a plurality of optical units (2) in each of which a plurality of light source modules (1) are arranged and a first comb-teeth member (41) and a second comb-teeth member (42) which are provided for holding the optical units (2), and respective first pins (213) and second pins (214) of a plurality of optical units (2) are held by the first comb-teeth member (41) and the second comb-teeth member (42). In the optical unit array (4), positions of a plurality of optical units (2) relative to one another can be determined with high accuracy by bringing the first pins (213) and the second pins (214) into contact with grooves (411) and grooves (421), respectively. The outgoing positions and directions of light beams emitted from the light source modules (1) are also determined with high accuracy in each optical unit (2).
    Type: Application
    Filed: December 13, 2006
    Publication date: May 3, 2007
    Applicant: DAINIPPON SCREEN MFG. CO., LTD.
    Inventor: Masahide Okazaki
  • Patent number: 7085079
    Abstract: A semiconductor laser (41) is fixed onto a base part (22) with a submount (32) and a reference optical axis (5) is determined by the semiconductor laser (41). A groove (222) having a U-shaped section is formed on a bonding part (221), and solder (31) is applied in the groove (222) and melted and a collimator lens (42) supported by a supporting arm (61) is moved to the groove (222). A light beam emitted from the semiconductor laser (41) is guided through the collimator lens (42) to an image pickup part (7), where an image representing the state of the light beam is acquired. The collimator lens (42) is positioned with respect to the reference optical axis (5) on the basis of the image and fixed onto the base part (22) out of contact therewith, with the solder interposed therebetween. This simplifies a structure of an optical element module (11) in which the collimator lens (42) is positioned with respect to the reference optical axis (5) with high accuracy.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: August 1, 2006
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Masahide Okazaki
  • Patent number: 7058276
    Abstract: A semiconductor laser (41) is fixed onto a base part (22) with a submount (32) and a reference optical axis (5) is determined by the semiconductor laser (41). A groove (222) having a U-shaped section is formed on a bonding part (221), and solder (31) is applied in the groove (222) and melted and a collimator lens (42) supported by a supporting arm (61) is moved to the groove (222). A light beam emitted from the semiconductor laser (41) is guided through the collimator lens (42) to an image pickup part (7), where an image representing the state of the light beam is acquired. The collimator lens (42) is positioned with respect to the reference optical axis (5) on the basis of the image and fixed onto the base part (22) out of contact therewith, with the solder interposed therebetween. This simplifies a structure of an optical element module (11) in which the collimator lens (42) is positioned with respect to the reference optical axis (5) with high accuracy.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: June 6, 2006
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Masahide Okazaki
  • Patent number: 6975344
    Abstract: A light source unit is provided with light source parts, a fixable member and a positioning member. Each light source part comprises a submount receiving a bare chip of a laser diode thereon and a collimator lens collimating laser beam emitted from the bare chip of the laser diode for defining the emitting direction. The plurality of light source parts are directly fixed to the fixable member consisting of a member having excellent thermal conductivity for quickly transmitting generated heat to a cooling unit and radiating the same and having a wiring function for supplying current to the light source parts. The positioning member has lens holes on prescribed positions so that the collimator lenses of the light source parts are fit therein for positioning the light source parts. Thus, a light source unit, having a plurality of channels, improving the degree of integration and precision of laser diodes and an image recorder employing the same can be provided.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: December 13, 2005
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Masahide Okazaki
  • Publication number: 20050161691
    Abstract: A semiconductor laser (41) is fixed onto a base part (22) with a submount (32) and a reference optical axis (5) is determined by the semiconductor laser (41). A groove (222) having a U-shaped section is formed on a bonding part (221), and solder (31) is applied in the groove (222) and melted and a collimator lens (42) supported by a supporting arm (61) is moved to the groove (222). A light beam emitted from the semiconductor laser (41) is guided through the collimator lens (42) to an image pickup part (7), where an image representing the state of the light beam is acquired. The collimator lens (42) is positioned with respect to the reference optical axis (5) on the basis of the image and fixed onto the base part (22) out of contact therewith, with the solder interposed therebetween. This simplifies a structure of an optical element module (11) in which the collimator lens (42) is positioned with respect to the reference optical axis (5) with high accuracy.
    Type: Application
    Filed: March 8, 2005
    Publication date: July 28, 2005
    Applicant: DAINIPPON SCREEN MFG. CO., LTD.
    Inventor: Masahide Okazaki
  • Publication number: 20050057643
    Abstract: An optical unit array comprises a plurality of optical units (2) in each of which a plurality of light source modules (1) are arranged and a first comb-teeth member (41) and a second comb-teeth member (42) which are provided for holding the optical units (2), and respective first pins (213) and second pins (214) of a plurality of optical units (2) are held by the first comb-teeth member (41) and the second comb-teeth member (42). In the optical unit array (4), positions of a plurality of optical units (2) relative to one another can be determined with high accuracy by bringing the first pins (213) and the second pins (214) into contact with grooves (411) and grooves (421), respectively. The outgoing positions and directions of light beams emitted from the light source modules (1) are also determined with high accuracy in each optical unit (2).
    Type: Application
    Filed: September 9, 2004
    Publication date: March 17, 2005
    Inventor: Masahide Okazaki
  • Publication number: 20040085654
    Abstract: A semiconductor laser (41) is fixed onto a base part (22) with a submount (32) and a reference optical axis (5) is determined by the semiconductor laser (41). A groove (222) having a U-shaped section is formed on a bonding part (221), and solder (31) is applied in the groove (222) and melted and a collimator lens (42) supported by a supporting arm (61) is moved to the groove (222). A light beam emitted from the semiconductor laser (41) is guided through the collimator lens (42) to an image pickup part (7), where an image representing the state of the light beam is acquired. The collimator lens (42) is positioned with respect to the reference optical axis (5) on the basis of the image and fixed onto the base part (22) out of contact therewith, with the solder interposed therebetween. This simplifies a structure of an optical element module (11) in which the collimator lens (42) is positioned with respect to the reference optical axis (5) with high accuracy.
    Type: Application
    Filed: September 16, 2003
    Publication date: May 6, 2004
    Applicant: DAINIPPON SCREEN MFG. CO., LTD.
    Inventor: Masahide Okazaki
  • Publication number: 20030052960
    Abstract: A light source unit is provided with light source parts, a fixable member and a positioning member. Each light source part comprises a submount receiving a bare chip of a laser diode thereon and a collimator lens collimating laser beam emitted from the bare chip of the laser diode for defining the emitting direction. The plurality of light source parts are directly fixed to the fixable member consisting of a member having excellent thermal conductivity for quickly transmitting generated heat to a cooling unit and radiating the same and having a wiring function for supplying current to the light source parts. The positioning member has lens holes on prescribed positions so that the collimator lenses of the light source parts are fit therein for positioning the light source parts. Thus, a light source unit, having a plurality of channels, improving the degree of integration and precision of laser diodes and an image recorder employing the same can be provided.
    Type: Application
    Filed: September 18, 2002
    Publication date: March 20, 2003
    Applicant: DAINIPPON SCREEN MFG. CO., LTD.
    Inventor: Masahide Okazaki
  • Patent number: 5835228
    Abstract: An apparatus which can correctly measure and observe optical information obtained from an object by removing a boundary diffraction wave generated from an edge of a pupil of an image pickup lens or an objective lens is provided.An image pickup lens forms a spatial image of an object on a position provided with a microlens array. A plurality of microlenses are arranged in this microlens array, for pixel-separating the spatial image. Light components from the microlenses pass through corresponding microapertures respectively, to be incident upon corresponding photoreceptors respectively for forming images. The microlenses project images of a diaphragm (pupil) of the image pickup lens on the corresponding microapertures respectively.
    Type: Grant
    Filed: January 7, 1997
    Date of Patent: November 10, 1998
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Masahide Okazaki, Takahisa Hayashi
  • Patent number: 5701201
    Abstract: The present invention allows image recording with plural light beams while eliminating alignment changes of light spots on the inner face of a drum. A light beam output unit 212 combines two circularly polarized light beams having opposite handedness to each other to produce a composite light beam CB. A polarization beam splitter 203 and mirrors 205 and 207 change the course of the light beam towards the inner face of a drum 120. A quarter-wave plate 202 and the polarization beam splitter 203 splits the composite light beam to two separate light beams as a function of the handedness of the circularly polarized light. The optical elements 202, 203, 205, and 207 are integrally rotated around the axis of the drum 120 by a main scanning motor 230, thus scanning a photosensitive material 110 held on the inner face of the drum 120 with the light beams.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 23, 1997
    Assignee: Dainippon Screen Manufacturing Co., Ltd.
    Inventor: Masahide Okazaki