Patents by Inventor Masahide Shimada

Masahide Shimada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965556
    Abstract: A method for measuring indentation resistance includes: obtaining a first curve indicating a yield shear stress in a depth direction of a raceway surface of a material forming a rolling bearing in a state before the raceway surface is subjected to machining, a second curve indicating a static shear stress in the depth direction of the raceway surface in a state in which the raceway surface is subjected to the machining, and a third curve indicating a static shear stress in the depth direction of the raceway surface in a state in which rolling elements are in contact with the raceway surface and a static load is applied to the raceway surface; and obtaining a correlation between an area and an indentation depth of the raceway ring by defining a region surrounded by exceeding the first curve and the second curve and falling below the third curve as the area.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: April 23, 2024
    Assignee: NSK LTD.
    Inventors: Hirofumi Ito, Takahito Shimada, Masahide Natori, Hideyuki Hidaka, Hayato Ishigami, Hiroki Komata
  • Patent number: 8402656
    Abstract: A method of producing a diaphragm damper 1 having a high pressure chamber 3 comprised of two diaphragms 2 with flanges 6 welded together and charged inside with a high pressure gas. The diaphragms 2 are made of magnetically attractable thin metal sheets. A pair of jigs 30, 40 provided to face each other inside the pressure vessel 20 hold the diaphragms 2 by magnetic force. The pressure vessel 20 is sealed and evacuated, then the pressure vessel 20 is charged and pressurized by a mixed gas including helium. After this, the pair of jigs 30, 40 are made to approach each other to make the flanges 6 of the pair of diaphragms 2 come into close contact. Inside the pressure vessel 20, the jigs 30, 40 are simultaneously rotated to rotate the pair of diaphragms 2 and a laser beam is fired at the flanges 6 of the diaphragms 2 to weld the flanges 6 over their entire circumferences.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: March 26, 2013
    Assignee: Eagle Industry Co., Ltd.
    Inventors: Takuji Matsuki, Masahide Shimada
  • Publication number: 20100162553
    Abstract: A method of producing a diaphragm damper 1 having a high pressure chamber 3 comprised of two diaphragms 2 with flanges 6 welded together and charged inside with a high pressure gas. The diaphragms 2 are made of magnetically attractable thin metal sheets. A pair of jigs 30, 40 provided to face each other inside the pressure vessel 20 hold the diaphragms 2 by magnetic force. The pressure vessel 20 is sealed and evacuated, then the pressure vessel 20 is charged and pressurized by a mixed gas including helium. After this, the pair of jigs 30, 40 are made to approach each other to make the flanges 6 of the pair of diaphragms 2 come into close contact. Inside the pressure vessel 20, the jigs 30, 40 are simultaneously rotated to rotate the pair of diaphragms 2 and a laser beam is fired at the flanges 6 of the diaphragms 2 to weld the flanges 6 over their entire circumferences.
    Type: Application
    Filed: March 8, 2010
    Publication date: July 1, 2010
    Applicant: EAGLE INDUSTRY CO., LTD.
    Inventors: Takuji MATSUKI, Masahide Shimada
  • Publication number: 20060272144
    Abstract: A method of producing a diaphragm damper 1 having a high pressure chamber 3 comprised of two diaphragms 2 with flanges 6 welded together and charged inside with a high pressure gas. The diaphragms 2 are made of magnetically attractable thin metal sheets. A pair of jigs 30, 40 provided to face each other inside the pressure vessel 20 hold the diaphragms 2 by magnetic force. The pressure vessel 20 is sealed and evacuated, then the pressure vessel 20 is charged and pressurized by a mixed gas including helium. After this, the pair of jigs 30, 40 are made to approach each other to make the flanges 6 of the pair of diaphragms 2 come into close contact. Inside the pressure vessel 20, the jigs 30, 40 are simultaneously rotated to rotate the pair of diaphragms 2 and a laser beam is fired at the flanges 6 of the diaphragms 2 to weld the flanges 6 over their entire circumferences.
    Type: Application
    Filed: September 10, 2004
    Publication date: December 7, 2006
    Inventors: Takuji Matsuki, Masahide Shimada