Patents by Inventor Masahiko Morinaga

Masahiko Morinaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050067062
    Abstract: An object of this invention is to provide a single-crystal nickel-based superalloy having high creep rupture strength at high temperatures and excel at corrosion resistance and oxidation resistance at high temperatures. Single-crystal nickel-based superalloys with high temperature strength, hot corrosion resistance and oxidation resistance comprising by weight, 3.0 to 7.0% Cr, 9.5 to 15.0% Co, 4.5 to 8.0% W, 3.3 to 6.0% Re, 4.0 to 8.0% Ta, 0.8 to 2.0% Ti, 4.5 to 6.5% Al, 0.01 to 0.2% Hf, less than 0.5% Mo, 0.01% or less C, 0.005% or less B, 0.01% or less Zr, 0.005% or less O, 0.005% or less N, and balance substantially Ni.
    Type: Application
    Filed: August 10, 2004
    Publication date: March 31, 2005
    Applicants: HITACHI, LTD., The Kansai Electric Power Co., Inc., Masahiko Morinaga, Yoshinori Murata
    Inventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
  • Publication number: 20030024609
    Abstract: In the thermal power system, the electricity production efficiency may be improved by providing turbine members having the improved high temperature characteristic over the corresponding prior art turbine members. Turbine members may be provided by using high resistant steels composed of any one or ones selected from the group consisting of the components, including 0.08 to 0.13% of carbon (C), 8.5 to 9.8% of chromium (Cr), 0 to 1.5% of molybdenum (Mo), 0.10 to 0.25% of vanadium (V), 0.03 to 0.08% of niobium (Nb), 0.2 to 5.0% of tungsten (W), 1.5 to 6.0% of cobalt (Co), 0.002 to 0.015% of boron (B), 0.015 to 0.025% of nitrogen (N), and optionally, 0.01 to 3.0% of rhenium (Re), 0.1 to 0.50% of silicon (Si), 0.1 to 1.0% of manganese (Mo), 0.05 to 0.8% of nickel (Ni) and 0.1 to 1.3% of cupper.
    Type: Application
    Filed: July 16, 2002
    Publication date: February 6, 2003
    Inventors: Masahiko Morinaga, Yoshinori Murata, Tsukasa Azuma, Kazuhiro Miki, Tohru Ishiguro, Ryokichi Hashizume
  • Patent number: 6210497
    Abstract: A super heat-resisting molybdenum-based alloy is disclosed. The alloy includes two or more alloying elements, the type and amount of the alloying elements being determined such that their average d-orbital energy level (average Md) and average bond order (average Bo) satisfy the following formula (3) and such that Tm is in the range of 2250-2700° C. in the following formula (4), the average Md and Bo being calculated by the formulas (1) and (2), and the bond order (Bo) with molybdenum and a d-orbital energy level being determined by the DV−X&agr; cluster method: Average Bo=&Sgr;Boi×C1  (1) Average Md=&Sgr;Mdi×Ci  (2) 1.718≦average Md≦1.881  (3) Tm(°C.)=(average Bo−0.165×average Md−4.899)/9.279×10−5  (4) wherein, Boi is a bond order of element “i”, Mdi is a d-orbital energy level of element “i”, and C1 is an atomic percent of element “i”.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: April 3, 2001
    Assignees: Doryokuro Kakunenryo Kaihatsu Jigyodan, Toyohashi University of Technology
    Inventors: Junichi Saito, Yoshiaki Tachi, Shigeki Kano, Masahiko Morinaga, Yoshinori Murata, Satoshi Inoue, Mitsuaki Furui
  • Patent number: 6174385
    Abstract: A method of designing a ferritic iron-base alloy having excellent characteristics according not to the conventional trial-and-error technique but to a theoretical method, and a ferritic heat-resistant steel for use as the material of turbines and boilers usable even in an ultrasupercritical pressure power plant.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: January 16, 2001
    Assignee: The Kansai Electric Power Co., Inc.
    Inventors: Masahiko Morinaga, Yoshinori Murata, Ryokichi Hashizume
  • Patent number: 5888318
    Abstract: A method of designing a ferritic iron-base alloy having excellent characteristics according not to the conventional trial-and-error technique but to a theoretical method, and a ferritic heat-resistant steel for use as the material of turbines and boilers usable even in an ultrasupercritical pressure power plant. Specifically, the d-electron orbital energy level (Md) and the bond order (Bo) with respect to iron (Fe) of each alloying element of a body-centered cubic iron-base alloy are determined by the Dv-X.alpha. cluster method, and the type and quantity of each element to be added to the alloy are determined in such a manner that the average Bo value and average Md value represented respectively by the following equations:average Bo value=.SIGMA.Xi.(Bo)i 1average Md value=.SIGMA.Xi.
    Type: Grant
    Filed: January 6, 1997
    Date of Patent: March 30, 1999
    Assignee: The Kansai Electric Power Co., Inc.
    Inventors: Masahiko Morinaga, Yoshinori Murata, Ryokichi Hashizume
  • Patent number: 5753177
    Abstract: A high-Ni austenitic stainless steel having swelling resistance, high-temperature creep strength, and phase stability under irradiation. The irradiation resistance and high-temperature strength of the high-Ni austenitic stainless steel are enhanced when it is composed of the following percentages by weight: Si, not exceeding 0.5 wt. %; Mn, not exceeding 1.0 wt. %; Cr, 13-18 wt. %; Ni, 30-50 wt. %; Mo+W=2.0-6.0 wt. %; Nb+V=0.1-0.8 wt. % (Nb/(Nb+V) ?weight ratio!=0.20-0.85 ?weight ratio!; N, 0.01-0.2 wt. %; and the residual consisting of Fe and unavoidable impurities.
    Type: Grant
    Filed: September 1, 1995
    Date of Patent: May 19, 1998
    Assignees: Doryokuro Kakunenryo Kaihatsu Jigyodan, Toyohashi University of Technology
    Inventors: Masahiko Morinaga, Yoshinori Murata, Shigeharu Ukai, Sakae Shikakura, Makoto Harada, Toshio Nishida
  • Patent number: 5685933
    Abstract: An FRP drive shaft wherein the shaft body and the flanges are formed in a body and a method of manufacturing the same are disclosed. The shaft body is formed by winding a resin impregnated fiber on a mandrel having pins on its circumferential surface while hooking the fiber on the pins. The fiber is then circumferentially wound to form a hoop-like reinforcing band near each end of the shaft body. After the pins and end parts of the mandrel are removed, each end portion of the shaft body is expanded by a pressing mold to form a flange. After hot setting, the remaining part of the mandrel is removed.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: November 11, 1997
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tadao Ohta, Shigenori Tamaki, Motohiro Mizuno, Masahiko Morinaga, Yasuyuki Suzuki
  • Patent number: 4824637
    Abstract: An alloy phase stability index diagram comprising a phase distribution range specified therein by calculating average values Md and Bo of an alloy according to the following formulae with respect to an energy level of "d" orbitals of an alloying element and a bond order between a mother metal and an alloying element:Md=.SIGMA.Xi(Md)i (1)Bo=.SIGMA.Xi(Bo)i (2)where Xi is an atomic fraction of the alloying element (i) and (Md)i and (Bo)i are the Md value and the Bo value, respectively, and by locating alloys with known compositions in the index diagram in which Bo or Md thus defined is taken in an ordinate or an abscissa or Bo and Md are taken in both the coordinates.
    Type: Grant
    Filed: January 22, 1988
    Date of Patent: April 25, 1989
    Inventors: Natsuo Yukawa, Masahiko Morinaga