Patents by Inventor Masahiko Toyoda

Masahiko Toyoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10675720
    Abstract: Provided is a high Cr Ni-based alloy welding wire with which tensile strength and weld cracking resistance of a welded portion, the integrity of the microstructure of a welded metal, and inhibition of scale generation are improved. The high Cr Ni-based alloy welding wire is configured to have an alloy composition comprising, by mass, C: 0.04% or less, Mn: 7% or less, Fe: 1 to 12%, Si: 0.75% or less, Al: 0.01 to 0.7%, Ti: 0.01 to 0.7%, Cr: 25.0 to 31.5%, Ta: 1 to 10%, and Mo: 1 to 6%, and as inevitable impurities, Ca+Mg: less than 0.002%, N: 0.1% or less, P: 0.02% or less, O: 0.01% or less, S: 0.0015% or less, H: 0.0015% or less, Cu: 0.08% or less, and Co: 0.05% or less, and the balance: Ni. Then, the high CrNi-based alloy welding wire is configured such that the contents of S, Ta, Al, and Ti satisfy the following relation (1) and the contents of Ta, Mo, and N satisfy the following relation (2): 12000S+0.58Ta?2.6Al?2Ti£19.3??(1) Ta+1.6Mo+187N35.7??(2).
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: June 9, 2020
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., NIPPON WELDING ROD CO., LTD.
    Inventors: Kenji Kawasaki, Seiichi Kawaguchi, Masahiko Toyoda, Seiji Asada, Akira Konishi, Yusuke Sano, Tamao Takatsu, Teiichiro Saito, Tetsuya Sango, Norihito Ogawa
  • Publication number: 20160061441
    Abstract: In a vibration suppression member for heat transfer tubes, a manufacturing method of the vibration suppression member for heat transfer tubes, a vibration suppression device and method for heat transfer tubes, and a steam generator, a second anti-vibration member (102) includes a first support member (111) provided with a first support surface (112) for supporting an outer surface of a heat transfer tube (66), and a second support member (121) provided with a second support surface (132, 135) and a third support surface (133, 136) for supporting the outer surface of the heat transfer tube (66) with predetermined tilt angles relative to the first support surface (112), the tilt angles being different from each other, the second support member (121) being fixed to a mounting surface (113) of the first support member (111). With this configuration, a vibration of the heat transfer tube (66) can appropriately be suppressed.
    Type: Application
    Filed: July 19, 2013
    Publication date: March 3, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masahito Matsubara, Hiroyuki Fujiwara, Masanori Toyoda, Nobutaka Nakajima, Tomohisa Ota, Masahiko Toyoda, Ryuichi Narita, Takafumi Hiro, Takaya Kusakabe
  • Publication number: 20140305921
    Abstract: Provided is a high Cr Ni-based alloy welding wire with which tensile strength and weld cracking resistance of a welded portion, the integrity of the microstructure of a welded metal, and inhibition of scale generation are improved. The high Cr Ni-based alloy welding wire is configured to have an alloy composition comprising, by mass, C: 0.04% or less, Mn: 7% or less, Fe: 1 to 12%, Si: 0.75% or less, Al: 0.01 to 0.7%, Ti: 0.01 to 0.7%, Cr: 25.0 to 31.5%, Ta: 1 to 10%, and Mo: 1 to 6%, and as inevitable impurities, Ca+Mg: less than 0.002%, N: 0.1% or less, P: 0.02% or less, O: 0.01% or less, S: 0.0015% or less, H: 0.0015% or less, Cu: 0.08% or less, and Co: 0.05% or less, and the balance: Ni. Then, the high CrNi-based alloy welding wire is configured such that the contents of S, Ta, Al, and Ti satisfy the following relation (1) and the contents of Ta, Mo, and N satisfy the following relation (2): 12000S+0.58Ta?2.6Al?2Ti£19.3??(1) Ta+1.6Mo+187N35.7??(2).
    Type: Application
    Filed: January 27, 2012
    Publication date: October 16, 2014
    Applicants: NIPPON WELDING ROD CO., LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenji Kawasaki, Seiichi Kawaguchi, Masahiko Toyoda, Seiji Asada, Akira Konishi, Yusuke Sano, Tamao Takatsu, Teiichiro Saito, Tetsuya Sango, Norihito Ogawa
  • Publication number: 20130316191
    Abstract: A welding structure (30A) includes a welding layer (60A) which is configured of a first built-up layer (33) which is formed of low-alloy steel or carbon steel having a carbon content of less than low-alloy steel and which is formed on a base metal (31), a second built-up layer (34) which is formed of a 600-type nickel-based alloy and which is formed on the first built-up layer (33) and a third built-up layer (35) which is formed of a 690-type nickel-based alloy and which is formed on the second built-up layer (34).
    Type: Application
    Filed: January 27, 2012
    Publication date: November 28, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenji Kawasaki, Masahiko Toyoda, Hiroshi Kanasaki, Tomoyuki Inoue, Takafumi Hiro, Seiichi Kawaguchi, Kosuke Kitamura, Tomohisa Ota, Nobutaka Nakajima
  • Patent number: 7755001
    Abstract: The present invention provides a high Cr Ni-based alloy filler material of which weld cracking resistance can sufficiently be increased by suppressing generation of scales, and a welding rod for shielded metal arc welding that exhibits sufficiently increased weld cracking resistance. The high Cr Ni-based alloy filler material comprises, in percent by weight, C: 0.04% or less, Si: 0.01 to 0.5%, Mn: 7% or less, Cr: 28 to 31.5%, Nb: 0.5% or less, Ta: 0.005 to 3.0%, Fe: 7 to 11%, Al: 0.01 to 0.4%, Ti: 0.01 to 0.45%, V: 0.5% or less, and, as inevitable impurities, P: 0.02% or less, S: 0.015% or less, O: 0.01% or less, N: 0.002 to 0.1%, and the balance: Ni.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: July 13, 2010
    Assignees: Mitsubishi Heavy Industries, Ltd., Nippon Welding Rod Co., Ltd.
    Inventors: Nobutaka Nakajima, Katsuji Dambayashi, Takashi Miyake, Masahiko Toyoda, Seiji Asada, Seiichi Kawaguchi, Yoshihiro Tada, Teiichiro Saito, Norihito Ogawa
  • Publication number: 20070272671
    Abstract: The present invention provides a high Cr Ni-based alloy filler material of which weld cracking resistance can sufficiently be increased by suppressing generation of scales, and a welding rod for shielded metal arc welding that exhibits sufficiently increased weld cracking resistance. The high Cr Ni-based alloy filler material comprises, in percent by weight, C: 0.04% or less, Si: 0.01 to 0.5%, Mn: 7% or less, Cr: 28 to 31.5%, Nb: 0.5% or less, Ta: 0.005 to 3.0%, Fe: 7 to 11%, Al: 0.01 to 0.4%, Ti: 0.01 to 0.45%, V: 0.5% or less, and, as inevitable impurities, P: 0.02% or less, S: 0.015% or less, O: 0.01% or less, N: 0.002 to 0.1%, and the balance: Ni.
    Type: Application
    Filed: January 21, 2005
    Publication date: November 29, 2007
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., NIPPON WELDING ROD CO., LTD.
    Inventors: Nobutaka Nakajima, Katsuji Dambayashi, Takashi Miyake, Masahiko Toyoda, Seiji Asada, Seiichi Kawaguchi, Yoshihiro Tada, Teiichiro Saito, Norihito Ogawa
  • Patent number: 7199788
    Abstract: The present invention provides a pointing input device, which sequentially outputs pointing position data indicating a pointing input position and push detection data from a push by the same pen or finger used for a pointing input. The pointing input device includes a display panel for displaying any pointing input information and an optical touch panel. The optical touch panel detects the pointing input in an input operation area, through which a display area is visible, and outputs the pointing position data. Piezoelectric substrates are attached to a transparent protective plate protecting the top surface of the display panel. When an operator pushes the transparent protective plate disposed at the lower part of the optical touch panel while carrying out the pointing input, the piezoelectric substrates output electric signals by which the push is judged. Then, the push detection data is outputted with the pointing position data.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: April 3, 2007
    Assignee: SMK Corporation
    Inventors: Yuichi Ise, Masahiko Toyoda
  • Publication number: 20040066379
    Abstract: The present invention provides a pointing input device, which sequentially outputs pointing position data indicating a pointing input position and push detection data from a push by the same pen or finger used for a pointing input. The pointing input device includes a display panel for displaying any pointing input information, and an optical touch panel. The optical touch panel detects the pointing input in an input operation area, through which a display area is visible, and outputs the pointing position data. Piezoelectric substrates are attached to a transparent protective plate protecting the top surface of the display panel. When an operator pushes the transparent protective plate disposed at the lower part of the optical touch panel while carrying out the pointing input, the piezoelectric substrates output electric signals by which the push is judged. Then, the push detection data is outputted with the pointing position data.
    Type: Application
    Filed: July 17, 2003
    Publication date: April 8, 2004
    Applicant: SMK CORPORATION
    Inventors: Yuichi Ise, Masahiko Toyoda
  • Patent number: 6343792
    Abstract: A shaft seal having a high abrasion resistance is disclosed, by which the leakage of the gas from the high-pressure side to the low-pressure side can be reduced. In the shaft seal, flexible leaves are multi-layered to form a ring shape. The shaft seal is mainly arranged around the rotation shaft of a gas turbine or the like. The relevant turbine comprises a casing, a compressor, a rotation shaft, moving blades attached to the rotation shaft, and stationary blades attached to the casing in a manner such that the stationary blades face the moving blades, wherein the shaft seals are provided between a plurality of stationary blades and the rotation shaft wherein the leaves of each shaft seal contact the rotation shaft. Under the rated operating conditions, the top ends of the leaves slightly separate from the surface of the rotation shaft due to the dynamic pressure generated by the rotation of the rotation shaft.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: February 5, 2002
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tanehiro Shinohara, Kouichi Akagi, Masanori Yuri, Masahiko Toyoda, Yutaka Ozawa, Akihiro Kawaguchi, Setunori Sakakibara, Zenichi Yoshida, Nobuhiro Kunitake, Takahiro Ohta, Hidehiko Nakane, Eisaku Ito, Yutaka Kawata, Koji Takeshita