Patents by Inventor Masahiko Yamagishi

Masahiko Yamagishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220278410
    Abstract: A battery housing apparatus including a housing portion forming a housing space in which a battery is removably housed, a holding portion configured to hold the battery, and an openable cover portion closing the housing space. The housing portion includes a support portion rotatably supporting the holding portion about a rotational axis so that the battery is movable between a housed position and a non-housed position in the housing space.
    Type: Application
    Filed: October 8, 2020
    Publication date: September 1, 2022
    Inventors: Mikio Kashiwai, Tadahiro Yaguchi, Masahiko Yamagishi, Katsunori Okubo
  • Patent number: 7658078
    Abstract: A heavy oil reforming system includes a reforming preheater raising the temperature of a mixed fluid comprising a high pressure heavy oil and high pressure steam up to a temperature for reforming reaction. The mixed fluid having been heated up to the temperature for reforming reaction is introduced into a reformer kept at the temperature for reforming reaction and thereby the heavy oil is reformed. This reforming system allows the attainment of a residence time of 1 to 10 min necessary for reforming in a uniform or nearly uniform temperature field, thereby implementing the manufacturing of reformed fuels from a large volume of heavy oil.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 9, 2010
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Koji Nishida, Nobuyuki Hokari, Shin-ichi Inage, Osami Yokota, Hirokazu Takahashi, Masahiko Yamagishi, Akinori Hayashi
  • Patent number: 7594387
    Abstract: A gas turbine which can be easily employed in an area where it is hard to obtain a sufficient amount of water, such as an isolated island. Heated and pressurized heavy oil and water in a supercritical state are mixed with each other in a modifying unit to produce fuel-purpose modified oil. The fuel-purpose modified oil is depressurized by a depressurizing valve. Due to a temperature fall caused by adiabatic expansion with the depressurization, the fuel-purpose modified oil is brought into a two-phase state where moisture is in a gas phase (steam) and modified oil is in a liquid phase. The fuel-purpose modified oil is separated into the steam and the modified oil by a gas-liquid separator. The separated steam is condensed to water in a condenser and returned to a water supply line. The modified oil in the liquid phase is supplied to a combustor, thereby driving a gas turbine.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: September 29, 2009
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Shinichi Inage, Nobuyuki Hokari, Osami Yokota, Hirokazu Takahashi, Masahiko Yamagishi
  • Patent number: 7591983
    Abstract: The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: September 22, 2009
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Hirokazu Takahashi, Shinichi Inage, Nobuyuki Hokari, Masahiko Yamagishi, Akinori Hayashi, Osami Yokota, Youji Ishibashi
  • Publication number: 20090221840
    Abstract: Ethylene carbonate having a highly reduced content of especially diols is provided. A process for purifying ethylene carbonate, including falling crude ethylene carbonate crystals from an upper portion of a tower, melting the crude ethylene carbonate crystal in a bottom portion of the tower, withdrawing a part of the obtained melt from the tower, and flowing the remainder of the obtained melt as a reflux liquid upward for countercurrent contact with the falling crude ethylene carbonate crystals, characterized in that a solid-liquid countercurrent contact region maintained at a constant temperature is formed.
    Type: Application
    Filed: March 16, 2007
    Publication date: September 3, 2009
    Inventors: Masahiko Yamagishi, Toshiyuki Furuya, Hideki Suda
  • Publication number: 20090032436
    Abstract: The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
    Type: Application
    Filed: September 30, 2008
    Publication date: February 5, 2009
    Inventors: Hirokazu Takahashi, Shinichi Inage, Nobuyuki Hokari, Masahiko Yamagishi, Akinori Hayashi, Osami Yokota, Youji Ishibashi
  • Publication number: 20080021238
    Abstract: (Meth)acrylic acid is produced using a reactor (1) through a vapor-phase catalytic oxidation reaction of propane or the like in a raw material gas, and the obtained reaction gas is distributed to a heat exchanger (20) and an absorption tower (30). Heat energy is recovered from the reaction gas supplied to the heat exchanger (20), and the reaction gas cooled in the heat exchanger (20) and the reaction gas distributed to the absorption tower (30) are supplied to the absorption tower (30). (Meth) acrylic acid is recovered from the reaction gas in an absorbing liquid, to thereby produce (meth) acrylic acid. The reaction gas is distributed to the heat exchanger (20) and the absorption tower (30) according to a pressure of the raw material gas at an inlet of the reactor (1). The present invention allows heat recovery from the reaction gas and a stable and continuous operation even when the heat exchanger for heat recovery is clogged.
    Type: Application
    Filed: September 7, 2004
    Publication date: January 24, 2008
    Inventors: Masahiko Yamagishi, Shuhei Yada, Kimikatsu Jinno
  • Patent number: 7278255
    Abstract: Disclosed is a gas turbine power generating system capable of achieving a high output power and a high power generating efficiency under conditions with a small amount of supplied water and less change in design of a gas turbine. A fine water droplet spraying apparatus (11) is disposed in a suction air chamber (22) on the upstream side of an air compressor (2), and a moisture adding apparatus (7) for adding moisture to high pressure air supplied from the compressor (2) is disposed. A regenerator (5) for heating the air to which moisture has been added by using gas turbine exhaust gas as a heat source is also provided. With this configuration, there can be obtain an effect of reducing a power for the compressor (2) and an effect of increasing the output power due to addition of moisture to air (20) for combustion. Further, since the used amount of fuel is reduced by adopting a regenerating cycle, the power generating efficiency is improved.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: October 9, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo, Yoshiki Noguchi, Moriaki Tsukamoto
  • Publication number: 20070039307
    Abstract: Disclosed is a gas turbine power generating system capable of achieving a high output power and a high power generating efficiency under conditions with a small amount of supplied water and less change in design of a gas turbine. A fine water droplet spraying apparatus (11) is disposed in a suction air chamber (22) on the upstream side of an air compressor (2), and a moisture adding apparatus (7) for adding moisture to high pressure air supplied from the compressor (2) is disposed. A regenerator (5) for heating the air to which moisture has been added by using gas turbine exhaust gas as a heat source is also provided. With this configuration, there can be obtain an effect of reducing a power for the compressor (2) and an effect of increasing the output power due to addition of moisture to air (20) for combustion. Further, since the used amount of fuel is reduced by adopting a regenerating cycle, the power generating efficiency is improved.
    Type: Application
    Filed: August 15, 2006
    Publication date: February 22, 2007
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo, Yoshiki Noguchi, Moriaki Tsukamoto
  • Publication number: 20060288705
    Abstract: A gas turbine which can be easily employed in an area where it is hard to obtain a sufficient amount of water, such as an isolated island. Heated and pressurized heavy oil and water in a supercritical state are mixed with each other in a modifying unit to produce fuel-purpose modified oil. The fuel-purpose modified oil is depressurized by a depressurizing valve. Due to a temperature fall caused by adiabatic expansion with the depressurization, the fuel-purpose modified oil is brought into a two-phase state where moisture is in a gas phase (steam) and modified oil is in a liquid phase. The fuel-purpose modified oil is separated into the steam and the modified oil by a gas-liquid separator. The separated steam is condensed to water in a condenser and returned to a water supply line. The modified oil in the liquid phase is supplied to a combustor, thereby driving a gas turbine.
    Type: Application
    Filed: July 12, 2005
    Publication date: December 28, 2006
    Inventors: Shinichi Inage, Nobuyuki Hokari, Osami Yokota, Hirokazu Takahashi, Masahiko Yamagishi
  • Patent number: 7146794
    Abstract: Disclosed is a gas turbine power generating system capable of achieving a high output power and a high power generating efficiency under conditions with a small amount of supplied water and less change in design of a gas turbine. A fine water droplet spraying apparatus (11) is disposed in a suction air chamber (22) on the upstream side of an air compressor (2), and a moisture adding apparatus (7) for adding moisture to high pressure air supplied from the compressor (2) is disposed. A regenerator (5) for heating the air to which moisture has been added by using gas turbine exhaust gas a heat source is also provided. With this configuration, there can be obtain an effect of reducing a power for the compressor (2) and an effect of increasing the output power due to addition of moisture to air (20) for combustion. Further, since the used amount of fuel is reduced by adopting a regenerating cycle, the power generating efficiency is improved.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: December 12, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo, Yoshiki Noguchi, Moriaki Tsukamoto
  • Patent number: 7096659
    Abstract: The present invention relates to an air humidifier for adding moisture to a working medium of a gas turbine for humidification, and gas turbine electric power generation equipment for driving the gas turbine by the working medium of high moisture to general electricity. An object of the present invention is to reduce pressure loss of burned exhaust gas of the gas turbine to improve output or efficiency of electric power generation. There comprises a humidifier (3), a combustor (5), a turbine (6), a generator (7), and a water recovery unit (10), further comprises an exhaust gas reheater (11) for heating burned exhaust gas discharged from the water recovery unit by surplus water discharged from the humidifier.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: August 29, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo
  • Patent number: 7082749
    Abstract: The present invention relates to an air humidifier for adding moisture to a working medium of a gas turbine for humidification, and gas turbine electric power generation equipment for driving the gas turbine by the working medium of high moisture to general electricity. An object of the present invention is to reduce pressure loss of burned exhaust gas of the gas turbine to improve output or efficiency of electric power generation. There comprises a humidifier (3), a combustor (5), a turbine (6), a generator (7), and a water recovery unit (10), further comprises an exhaust gas reheater (11) for heating burned exhaust gas discharged from the water recovery unit by surplus water discharged from the humidifier.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: August 1, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo
  • Publication number: 20060107646
    Abstract: The present invention relates to an air humidifier for adding moisture to a working medium of a gas turbine for humidification, and gas turbine electric power generation equipment for driving the gas turbine by the working medium of high moisture to general electricity. An object of the present invention is to reduce pressure loss of burned exhaust gas of the gas turbine to improve output or efficiency of electric power generation. There comprises a humidifier (3), a combustor (5), a turbine (6), a generator (7), and a water recovery unit (10), further comprises an exhaust gas reheater (11) for heating burned exhaust gas discharged from the water recovery unit by surplus water discharged from the humidifier.
    Type: Application
    Filed: December 22, 2005
    Publication date: May 25, 2006
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo
  • Publication number: 20060057059
    Abstract: A heavy oil reforming system includes a reforming preheater raising the temperature of a mixed fluid comprising a high pressure heavy oil and high pressure steam up to a temperature for reforming reaction. The mixed fluid having been heated up to the temperature for reforming reaction is introduced into a reformer kept at the temperature for reforming reaction and thereby the heavy oil is reformed. This reforming system allows the attainment of a residence time of 1 to 10 min necessary for reforming in a uniform or nearly uniform temperature field, thereby implementing the manufacturing of reformed fuels from a large volume of heavy oil.
    Type: Application
    Filed: July 29, 2005
    Publication date: March 16, 2006
    Inventors: Koji Nishida, Nobuyuki Hokari, Shin-ichi Inage, Osami Yokota, Hirokazu Takahashi, Masahiko Yamagishi, Akinori Hayashi
  • Publication number: 20060032211
    Abstract: Disclosed is a gas turbine power generating system capable of achieving a high output power and a high power generating efficiency under conditions with a small amount of supplied water and less change in design of a gas turbine. A fine water droplet spraying apparatus (11) is disposed in a suction air chamber (22) on the upstream side of an air compressor (2), and a moisture adding apparatus (7) for adding moisture to high pressure air supplied from the compressor (2) is disposed. A regenerator (5) for heating the air to which moisture has been added by using gas turbine exhaust gas a heat source is also provided. With this configuration, there can be obtain an effect of reducing a power for the compressor (2) and an effect of increasing the output power due to addition of moisture to air (20) for combustion. Further, since the used amount of fuel is reduced by adopting a regenerating cycle, the power generating efficiency is improved.
    Type: Application
    Filed: October 20, 2005
    Publication date: February 16, 2006
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo, Yoshiki Noguchi, Moriaki Tsukamoto
  • Patent number: D556647
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: December 4, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventor: Masahiko Yamagishi
  • Patent number: D561651
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: February 12, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventor: Masahiko Yamagishi
  • Patent number: D623661
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 14, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masahiko Yamagishi, Masahiro Anzai
  • Patent number: D631486
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: January 25, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masahiko Yamagishi, Masahiro Anzai