Patents by Inventor Masahiko Yoshiki

Masahiko Yoshiki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8169040
    Abstract: A semiconductor device includes: an n-channel MIS transistor and a p-channel MIS transistor. An n-channel MIS transistor includes: a first gate insulating film having an amorphous layer or an epitaxial layer formed on a p-type semiconductor region between a first source/drain regions; and a first gate electrode having a stack structure formed with a first metal layer and a first compound layer. The first metal layer is formed on the first gate insulating film and made of a first metal having a work function of 4.3 eV or smaller, and the first compound layer is formed on the first metal layer and contains a compound of a second metal and a IV-group semiconductor. The second metal is different from the first metal. A p-channel MIS transistor includes a second gate electrode having a second compound layer containing a compound of the same composition as the first compound layer.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: May 1, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Tsuchiya, Masato Koyama, Masahiko Yoshiki
  • Patent number: 8129792
    Abstract: A semiconductor device includes n- and p-type semiconductor regions separately formed on a substrate, an interlayer insulator formed on the substrate and having first and second trenches formed to reach the n- and p-type regions. There are further included first and second gate insulators formed inside of the first and second trenches, a first metal layer formed inside of the first trench via the first gate insulator, a second metal layer formed in a thickness of 1 monolayer or more and 1.5 nm or less inside of the second trench via the second gate insulator, a third metal layer formed on the second metal layer and containing at least one of a simple substance, a nitride, a carbide and an oxide of at least one metal element of alkaline earth metal elements and group III elements, first and second source/drain regions formed on the n- and p-type regions.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: March 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Reika Ichihara, Yoshinori Tsuchiya, Hiroki Tanaka, Masahiko Yoshiki, Masato Koyama
  • Publication number: 20100258880
    Abstract: A semiconductor device includes: an n-channel MIS transistor and a p-channel MIS transistor. An n-channel MIS transistor includes: a first gate insulating film having an amorphous layer or an epitaxial layer formed on a p-type semiconductor region between a first source/drain regions; and a first gate electrode having a stack structure formed with a first metal layer and a first compound layer. The first metal layer is formed on the first gate insulating film and made of a first metal having a work function of 4.3 eV or smaller, and the first compound layer is formed on the first metal layer and contains a compound of a second metal and a IV-group semiconductor. The second metal is different from the first metal. A p-channel MIS transistor includes a second gate electrode having a second compound layer containing a compound of the same composition as the first compound layer.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 14, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori TSUCHIYA, Masato Koyama, Masahiko Yoshiki
  • Patent number: 7768077
    Abstract: A semiconductor device includes: an n-channel MIS transistor and a p-channel MIS transistor. An n-channel MIS transistor includes: a first gate insulating film having an amorphous layer or an epitaxial layer formed on a p-type semiconductor region between a first source/drain regions; and a first gate electrode having a stack structure formed with a first metal layer and a first compound layer. The first metal layer is formed on the first gate insulating film and made of a first metal having a work function of 4.3 eV or smaller, and the first compound layer is formed on the first metal layer and contains a compound of a second metal and a IV-group semiconductor. The second metal is different from the first metal. A p-channel MIS transistor includes a second gate electrode having a second compound layer containing a compound of the same composition as the first compound layer.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: August 3, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Tsuchiya, Masato Koyama, Masahiko Yoshiki
  • Patent number: 7737503
    Abstract: A semiconductor device includes: an n-channel MIS transistor and a p-channel MIS transistor. An n-channel MIS transistor includes: a first gate insulating film having an amorphous layer or an epitaxial layer formed on a p-type semiconductor region between a first source/drain regions; and a first gate electrode having a stack structure formed with a first metal layer and a first compound layer. The first metal layer is formed on the first gate insulating film and made of a first metal having a work function of 4.3 eV or smaller, and the first compound layer is formed on the first metal layer and contains a compound of a second metal and a IV-group semiconductor. The second metal is different from the first metal. A p-channel MIS transistor includes a second gate electrode having a second compound layer containing a compound of the same composition as the first compound layer.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Tsuchiya, Masato Koyama, Masahiko Yoshiki
  • Publication number: 20100078731
    Abstract: A semiconductor device includes: an n-channel MIS transistor and a p-channel MIS transistor. An n-channel MIS transistor includes: a first gate insulating film having an amorphous layer or an epitaxial layer formed on a p-type semiconductor region between a first source/drain regions; and a first gate electrode having a stack structure formed with a first metal layer and a first compound layer. The first metal layer is formed on the first gate insulating film and made of a first metal having a work function of 4.3 eV or smaller, and the first compound layer is formed on the first metal layer and contains a compound of a second metal and a IV-group semiconductor. The second metal is different from the first metal. A p-channel MIS transistor includes a second gate electrode having a second compound layer containing a compound of the same composition as the first compound layer.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 1, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori TSUCHIYA, Masato KOYAMA, Masahiko YOSHIKI
  • Publication number: 20090166749
    Abstract: A semiconductor device includes n- and p-type semiconductor regions separately formed on a substrate, an interlayer insulator formed on the substrate and having first and second trenches formed to reach the n- and p-type regions. There are further included first and second gate insulators formed inside of the first and second trenches, a first metal layer formed inside of the first trench via the first gate insulator, a second metal layer formed in a thickness of 1 monolayer or more and 1.5 nm or less inside of the second trench via the second gate insulator, a third metal layer formed on the second metal layer and containing at least one of a simple substance, a nitride, a carbide and an oxide of at least one metal element of alkaline earth metal elements and group III elements, first and second source/drain regions formed on the n- and p-type regions.
    Type: Application
    Filed: September 18, 2008
    Publication date: July 2, 2009
    Inventors: Reika ICHIHARA, Yoshinori Tsuchiya, Hiroki Tanaka, Masahiko Yoshiki, Masato Koyama
  • Publication number: 20090032884
    Abstract: According to an aspect of the invention, a semiconductor device comprises: a N-channel MIS transistor comprising; a p-type semiconductor layer; a first gate insulation layer formed on the p-type semiconductor layer; a first gate electrode formed on the first gate insulation layer; and a first source-drain region formed in the p-type semiconductor layer where the first gate electrode is sandwiched along a direction of gate length. The first gate electrode comprises a crystal phase including a cubic crystal of NiSi2 which has a lattice constant of 5.39 angstroms to 5.40 angstroms.
    Type: Application
    Filed: July 24, 2008
    Publication date: February 5, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Tsuchiya, Masato Koyama, Masahiko Yoshiki
  • Patent number: 7416967
    Abstract: According to an aspect of the invention, a semiconductor device comprises: a N-channel MIS transistor comprising; a p-type semiconductor layer; a first gate insulation layer formed on the p-type semiconductor layer; a first gate electrode formed on the first gate insulation layer; and a first source-drain region formed in the p-type semiconductor layer where the first gate electrode is sandwiched along a direction of gate length. The first gate electrode comprises a crystal phase including a cubic crystal of NiSi2 which has a lattice constant of 5.39 angstroms to 5.40 angstroms.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 26, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Tsuchiya, Masato Koyama, Masahiko Yoshiki
  • Patent number: 7375327
    Abstract: A method and device to accurately obtain very small quantity of wear of the order of nanometers of a protective film on the surface of a sliding member. A quantity of wear on the surface of a measurement sample including a base and a coating layer is measured by making a spectrum of the surface elements in a reference sample using a surface-element analysis device which analyzes elements on the surface of a substance from an energy spectrum of charged particles obtained by applying excited ionization radiation on the reference sample equivalent to the measurement and by measuring charged particles generated from the surface of the substance. A step of obtaining signal intensity ratios of plural elements from the spectrum is repeated a plurality of times while the surface of the reference sample is being etched and calibration curves which indicate a distribution of the signal intensity ratios of the plural elements in the reference sample are made.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: May 20, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiko Yoshiki, Makoto Kato
  • Patent number: 7358492
    Abstract: A deconvolution analysis apparatus includes a sputtering rate calibrating unit that calibrates a depth profile resulting from a depth analysis on a sample to be estimated by using a sputtering surface analysis, according to a depth change of a sputtering rate in an initial sputtering; and a deconvolution analysis unit that performs a deconvolution analysis on the depth profile whose depth axis is extended, so as to make a depth change of a depth resolution in the initial sputtering apparently constant.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: April 15, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiro Tomita, Hiroki Tanaka, Masahiko Yoshiki
  • Publication number: 20080029822
    Abstract: A semiconductor device includes: an n-channel MIS transistor and a p-channel MIS transistor. An n-channel MIS transistor includes: a first gate insulating film having an amorphous layer or an epitaxial layer formed on a p-type semiconductor region between a first source/drain regions; and a first gate electrode having a stack structure formed with a first metal layer and a first compound layer. The first metal layer is formed on the first gate insulating film and made of a first metal having a work function of 4.3 eV or smaller, and the first compound layer is formed on the first metal layer and contains a compound of a second metal and a IV-group semiconductor. The second metal is different from the first metal. A p-channel MIS transistor includes a second gate electrode having a second compound layer containing a compound of the same composition as the first compound layer.
    Type: Application
    Filed: March 19, 2007
    Publication date: February 7, 2008
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori TSUCHIYA, Masato KOYAMA, Masahiko YOSHIKI
  • Publication number: 20070210351
    Abstract: According to an aspect of the invention, a semiconductor device comprises: a N-channel MIS transistor comprising; a p-type semiconductor layer; a first gate insulation layer formed on the p-type semiconductor layer; a first gate electrode formed on the first gate insulation layer; and a first source-drain region formed in the p-type semiconductor layer where the first gate electrode is sandwiched along a direction of gate length. The first gate electrode comprises a crystal phase including a cubic crystal of NiSi2 which has a lattice constant of 5.39 angstroms to 5.40 angstroms.
    Type: Application
    Filed: September 26, 2006
    Publication date: September 13, 2007
    Inventors: Yoshinori Tsuchiya, Masato Koyama, Masahiko Yoshiki
  • Publication number: 20070057335
    Abstract: It is made possible to control the effective work function of the gate electrode so that the transistor can have an optimum operating threshold voltage. A semiconductor device includes: a semiconductor substrate; a gate insulating film provided on the semiconductor substrate; a gate electrode provided on the gate insulating film; source/drain regions provided in the semiconductor substrate on both sides of the gate electrode; and a layer which is provided at an interface between the gate electrode and the gate insulating film, and contains an element having an electronegativity different from those of elements constituting the gate electrode and the gate insulating film.
    Type: Application
    Filed: March 17, 2006
    Publication date: March 15, 2007
    Inventors: Yoshinori Tsuchiya, Masahiko Yoshiki
  • Publication number: 20060278823
    Abstract: A deconvolution analysis apparatus includes a sputtering rate calibrating unit that calibrates a depth profile resulting from a depth analysis on a sample to be estimated by using a sputtering surface analysis, according to a depth change of a sputtering rate in an initial sputtering; and a deconvolution analysis unit that performs a deconvolution analysis on the depth profile whose depth axis is extended, so as to make a depth change of a depth resolution in the initial sputtering apparently constant.
    Type: Application
    Filed: January 12, 2006
    Publication date: December 14, 2006
    Inventors: Mitsuhiro Tomita, Hiroki Tanaka, Masahiko Yoshiki
  • Publication number: 20060108545
    Abstract: An object of the present invention is to provide means for accurately obtaining very small quantity of wear of the order of nanometers of a protective film on the surface of a sliding member. In a method of measuring a quantity of wear on the surface of a measurement sample comprising a base and a coating layer, a spectrum of the surface of a reference sample is made, using a surface-element analysis device which analyzes elements on the surface of a substance from an energy spectrum of charged particles which is obtained by applying excited ionization radiation on the reference sample equivalent to the measurement one and by measuring charged particles generated from the surface of the substance. A step of obtaining signal intensity ratios of plural elements from the spectrum is repeated a plurality of times while the surface of the reference sample is being etched and calibration curves which indicates a distribution of the signal intensity ratios of the plural elements in the reference sample are made.
    Type: Application
    Filed: November 7, 2005
    Publication date: May 25, 2006
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masahiko Yoshiki, Makoto Kato
  • Publication number: 20040011957
    Abstract: An object of the present invention is to provide means for accurately obtaining very small quantity of wear of the order of nanometers of a protective film on the surface of a sliding member. In a method of measuring a quantity of wear on the surface of a measurement sample comprising a base and a coating layer, a spectrum of the surface of a reference sample is made, using a surface-element analysis device which analyzes elements on the surface of a substance from an energy spectrum of charged particles which is obtained by applying excited ionization radiation on the reference sample equivalent to the measurement one and by measuring charged particles generated from the surface of the substance. A step of obtaining signal intensity ratios of plural elements from the spectrum is repeated a plurality of times while the surface of the reference sample is being etched and calibration curves which indicates a distribution of the signal intensity ratios of the plural elements in the reference sample are made.
    Type: Application
    Filed: April 15, 2003
    Publication date: January 22, 2004
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masahiko Yoshiki, Makoto Kato
  • Patent number: 5746829
    Abstract: The invention provides a method for concentrating impurity contained in a semiconductor crystal sample 11 by irradiating repeatedly a specified position of the semiconductor crystal sample 11 with a laser beam having a specified intensity by means of a laser oscillator 13. Then the invention provides a method for analyzing impurity contained in the impurity concentrated area of the semiconductor crystal sample 11 in high sensitivity by means of a specified physical analyzing means. According to demand, a method of the invention concentrates impurity by means of a laser beam after forming an insulating film such as an oxide film and the like transparent to the laser beam on the surface of the semiconductor crystal sample. At the same time, the invention provides a concentrator and an analyzer to be used for these concentrating method and analyzing method.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: May 5, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideki Matsunaga, Hiroshi Yamaguchi, Mitsuhiro Tomita, Seizou Doi, Masahiko Yoshiki, Shoji Kozuka, Masayuki Onuma
  • Patent number: 5598025
    Abstract: An impurity diffusion layer shallow in diffusion depth and high in activity is formed in a semiconductor device. In the semiconductor device, clusters of icosahedron structure each composed of boron atoms are formed in the silicon crystal of the impurity layer of the semiconductor device so as to function as acceptors. Further, after the clusters of icosahedron structure each composed of 12 boron atoms have been formed by implanting boron ions at high concentration, the device is processed at temperature lower than 700.degree. C. to prevent the boron from being decreased due to combination with silicon. Since an impurity layer shallow in diffusion from the substrate surface and high in activity can be formed and further the clusters of icosahedron structure each composed of 12 boron atoms can be utilized as acceptors, it is possible to realize a high doping even in the manufacturing process for the devices not suitable for high temperature annealing.
    Type: Grant
    Filed: February 23, 1995
    Date of Patent: January 28, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Murakoshi, Ichiro Mizushima, Masaharu Watanabe, Masahiko Yoshiki
  • Patent number: 5413943
    Abstract: An impurity diffusion layer shallow in diffusion depth and high in activity is formed in a semiconductor device. In the semiconductor device, clusters of icosahedron structure each composed of boron atoms are formed in the silicon crystal of the impurity layer of the semiconductor device so as to function as acceptors. Further, after the clusters of icosahedron structure each composed of 12 boron atoms have been formed by implanting boron ions at high concentration, the device is processed at temperature lower than 700.degree. C. to prevent the boron from being decreased due to combination with silicon. Since an impurity layer shallow in diffusion from the substrate surface and high in activity can be formed and further the clusters of icosahedron structure each composed of 12 boron atoms can be utilized as acceptors, it is possible to realize a high doping even in the manufacturing process for the devices not suitable for high temperature annealing.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: May 9, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Murakoshi, Ichiro Mizushima, Masaharu Watanabe, Masahiko Yoshiki