Patents by Inventor Masahiro Harada

Masahiro Harada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210163039
    Abstract: A vehicle control system executes automated driving control that controls automated driving of a vehicle based on driving environment information indicating a driving environment for the vehicle. When a part of functions of the vehicle is failed during the automated driving, the vehicle control system executes emergency stop control that stops the vehicle. In the emergency stop control, the vehicle control system: acquires failure status information being information on the failed part of functions; determines, based on the failure status information and the driving environment information, a target stop position at which even the vehicle with the failed part of functions is able to arrive and stop by the automated driving; and executes the automated driving control such that the vehicle travels toward the target stop position to stop at the target stop position.
    Type: Application
    Filed: November 23, 2020
    Publication date: June 3, 2021
    Inventors: Takayuki Iwamoto, Masahiro Harada, Ayako Shimizu, Akihide Tachibana
  • Publication number: 20210146958
    Abstract: The vehicle control system includes a first controller configured to generate a target trajectory for the automated driving, and a second controller configured to execute vehicle travel control such that the vehicle follows the target trajectory. During the automated driving, the second controller controls a travel control amount which is a control amount of the vehicle travel control, acquire driving environment information, and execute preventive safety control for intervening in the travel control amount based on the driving environment information. The first controller includes a memory device in which information of an intervention suppression area is stored. When the vehicle travels in the intervention suppression area during the automated driving, the first controller outputs a suppression instruction for the preventive safety control to the second controller.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 20, 2021
    Inventors: Shin Tanaka, Takayuki Iwamoto, Kazuyuki Fujita, Masahiro Harada
  • Publication number: 20210146956
    Abstract: A vehicle traveling control system according to the example in the present disclosure communicates with an automatic operation control system which drafts a traveling plan of the vehicle, and performs an automatic traveling control for automatically running the vehicle along the traveling plan received from the automatic operation control system. The vehicle traveling control system predicts a risk based on information about surrounding environment of the vehicle, and performs, when the risk is predicted, a risk avoidance control to intervene in the automatic traveling control in order to avoid the risk. When the risk avoidance control is executed, the vehicle traveling control system transmits information on the risk avoidance control to the automatic operation control system.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 20, 2021
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210139050
    Abstract: A target trajectory generation device generates and outputs target trajectories each including a target position and a target speed of a vehicle. A first target trajectory is intended to perform at least one of steering, acceleration, and deceleration of the vehicle. A second target trajectory is intended to decelerate and stop the vehicle. When a malfunctioning device does not exist, a vehicle traveling control device executes vehicle traveling control based on the first target trajectory. When the malfunctioning device exists, the vehicle traveling control device stops the vehicle by executing the vehicle traveling control based on the second target trajectory output before the malfunction occurs, or based on the second target trajectory output from the target trajectory generation device other than the malfunctioning device.
    Type: Application
    Filed: October 27, 2020
    Publication date: May 13, 2021
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuyuki Fujita, Shin Tanaka, Takayuki Iwamoto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107521
    Abstract: The vehicle control system includes a first unit configured to generate a target trajectory for the automated driving, and a second unit configured to execute vehicle travel control such that the vehicle follows the target trajectory. During the automated driving, the second unit is configured to control a travel control amount of the vehicle travel control, acquire driving environment information, and perform preventive safety control for intervening in the travel control amount so as to prevent or avoid a collision between the vehicle and an obstacle based on the driving environment information. In the preventive safety control, the second unit is configured to acquire a driving involvement degree indicating a degree of involvement of a person in driving of the vehicle, and to change an intervention degree to the travel control amount in the preventive safety control based on the driving involvement degree.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107514
    Abstract: A vehicle control system for an autonomous vehicle includes: a first control device configured to generate a first driving plan including desired lateral lane driving positions or desired lateral lane driving position ranges; a plurality of first sensors configured to obtain information on motion of the vehicle and information on surroundings of the vehicle; and a second control device configured to communicate with the first control device, generate, based on the first driving plan obtained from the first control device and the information obtained by the first sensors, a second driving plan different from the first driving plan, the second driving plan including target lateral lane driving positions or target lateral lane driving position ranges, and control driving operation of the vehicle based on the second driving plan.
    Type: Application
    Filed: September 23, 2020
    Publication date: April 15, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshinori WATANABE, Kazuyuki Fujita, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107517
    Abstract: A vehicle control system generates a first target trajectory, which is a target trajectory for an automated driving of a vehicle, and executes vehicle travel control based on the first target trajectory. The vehicle control system generates a second target trajectory which is a target trajectory which does not conflict with a restrict condition, when the travel based on the first target trajectory conflicts with a safety restrict condition, and executes travel assist control by using the second target trajectory. The vehicle control system judges whether or not a resurgence condition is satisfied by using the first target trajectory that is generated during the execution of the travel assist control. If it is judged that the resurgence condition is satisfied, the vehicle control system returns to the execution of the vehicle travel control from that of the travel assist control.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 15, 2021
    Inventors: Yoshinori Watanabe, Kazuyuki Fujita, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107528
    Abstract: A vehicle control system includes a first unit configured to generate a target trajectory based on a travel plan of the vehicle, and a second unit configured to execute vehicle travel control such that the vehicle follows the target trajectory. During the automated driving, the first unit transmits automated driving information to the second unit. The system includes a memory device in which driving environment information is stored, and a processor for controlling a travel control amount. During the automated driving, the processor executes preventive safety control for intervening in the travel control amount so as to prevent or avoid a collision between the vehicle and an obstacle based on the driving environment information. In the preventive safety control, the processor changes an intervention degree to the travel control amount based on the automated driving information.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 15, 2021
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107516
    Abstract: A vehicle control system generates at least one primary candidate of a target trajectory for an automated driving of a vehicle and executes a primary evaluation. An evaluation index of the primary evaluation includes a travel safety level of a travel to follow the primary candidate. The primary candidate having highest travel safety level is selected as at least one strong candidate of the target trajectory. If only one is selected as the strong candidate, the vehicle control system determines the selected strong candidate as a finalist candidate of the target trajectory. If two or more strong candidates are selected, the vehicle control system executes a secondary evaluation for the strong candidates to determine the finalist candidate. An additional evaluation index is used in the secondary evaluation.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 15, 2021
    Inventors: Kazuyuki Fujita, Yoshinori Watanabe, Takayuki Goto, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20210107522
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. When the second target trajectory is generated during the automated driving, or when the second target trajectory is generated during the automated driving and a priority condition for giving priority to the second target trajectory is satisfied, the vehicle travel control device executes the vehicle travel control by giving more weight to the second target trajectory than to the first target trajectory.
    Type: Application
    Filed: September 15, 2020
    Publication date: April 15, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Goto, Yoshinori Watanabe, Nobuhide Kamata, Kazuyuki Fujita, Masahiro Harada
  • Publication number: 20210107513
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. Even when the second target trajectory is generated during the automated driving, or when the second target trajectory is generated during the automated driving and a priority condition for giving priority to the first target trajectory is satisfied, the vehicle travel control device executes the vehicle travel control by giving more weight to the first target trajectory than to the second target trajectory.
    Type: Application
    Filed: September 14, 2020
    Publication date: April 15, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki GOTO, Yoshinori WATANABE, Nobuhide KAMATA, Kazuyuki FUJITA, Masahiro HARADA
  • Publication number: 20210107478
    Abstract: A vehicle travel control device executes vehicle travel control such that a vehicle follows a target trajectory. An automated driving control device generates a first target trajectory that is the target trajectory for automated driving of the vehicle. The vehicle travel control device further determines whether or not an activation condition of travel assist control is satisfied. When the activation condition is satisfied, the vehicle travel control device generates a second target trajectory that is the target trajectory for the travel assist control. When the second target trajectory is generated during the automated driving, the vehicle travel control device determines whether or not a cancellation condition is satisfied. When the cancellation condition is satisfied, the vehicle travel control device cancels both the first target trajectory and the second target trajectory, and decelerates the vehicle.
    Type: Application
    Filed: September 22, 2020
    Publication date: April 15, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki GOTO, Yoshinori WATANABE, Nobuhide KAMATA, Kazuyuki FUJITA, Masahiro HARADA
  • Patent number: 10960891
    Abstract: A method, an apparatus, and a program of predicting an obstacle course, capable of appropriately predicting a course of an obstacle even under a complicated traffic environment, are provided. The course, which the obstacle may take, is predicted based on the position and the internal state of the obstacle, and at the time of the prediction, a plurality of courses are probabilistically predicted for at least one obstacle. When there are a plurality of obstacles, the course in which different obstacles interfere with each other is obtained from the predicted courses, which a plurality of obstacles may take, and the predictive probability of the course for which the probabilistic prediction is performed from the courses in which they interfere with each other is lowered. Probability of realizing each of a plurality of courses including the course of which predicted probability is lowered is calculated.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: March 30, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiki Kindo, Kazuaki Aso, Masahiro Harada
  • Publication number: 20210056850
    Abstract: A drive assist device includes a display that displays an image around a vehicle imaged by an imaging device installed on the vehicle, a setting unit that sets a target designated by a user on the image as a recognition target, a detection unit that detects a state change of the recognition target on the image in a case where the recognition target is set, and a notification control unit that controls a notification device to notify the user of the detection result in a case where the state change of the set recognition target is detected.
    Type: Application
    Filed: November 10, 2020
    Publication date: February 25, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kentaro ICHIKAWA, Toshiki KINDO, Katsuhiro SAKAI, Masahiro HARADA, Hiromitsu URANO
  • Patent number: 10867515
    Abstract: A drive assist device includes a display that displays an image around a vehicle imaged by an imaging device installed on the vehicle, a setting unit that sets a target designated by a user on the image as a recognition target, a detection unit that detects a state change of the recognition target on the image in a case where the recognition target is set, and a notification control unit that controls a notification device to notify the user of the detection result in a case where the state change of the set recognition target is detected.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: December 15, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kentaro Ichikawa, Toshiki Kindo, Katsuhiro Sakai, Masahiro Harada, Hiromitsu Urano
  • Patent number: 10759419
    Abstract: A vehicle traveling controller performs emergency evacuation traveling in the case of an emergency. The vehicle traveling controller determines whether a vehicle traveling in accordance with a normal traveling rule is not dangerous and becomes proper traveling or not based on environmental information around the vehicle, when it is determined that the vehicle traveling in accordance with the normal traveling rule becomes proper traveling, executes normal traveling control for instructing the vehicle to travel in accordance with the normal traveling rule, and when the vehicle traveling in accordance with the normal traveling rule does not become proper traveling, executes emergency evacuation traveling control for instructing the vehicle to perform emergency evacuation traveling not in accordance with the normal traveling rule.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiki Kindo, Kazuaki Aso, Masahiro Harada
  • Publication number: 20200238984
    Abstract: Disclosed is a vehicle traveling controller that performs emergency evacuation traveling in the case of an emergency for proper traveling control. The vehicle traveling controller determines whether the vehicle traveling in accordance with a normal traveling rule is not dangerous and becomes proper traveling or not on the basis of environmental information around a vehicle (S18), when it is determined that the vehicle traveling in accordance with the normal traveling rule becomes proper traveling, executes normal traveling control for instructing the vehicle to travel in accordance with the normal traveling rule (S20), and when vehicle traveling in accordance with the normal traveling rule does not become proper traveling, executes emergency evacuation traveling control for instructing the vehicle to perform emergency evacuation traveling which is not in accordance with the normal traveling rule (S22).
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiki KINDO, Kazuaki ASO, Masahiro HARADA
  • Publication number: 20200139979
    Abstract: A map information system includes a map database including map information; and a driving assist level determination device. The map information is associated with an evaluation value indicating a certainty of the map information for each location in an absolute coordinate system. Information indicating that the intervention operation is performed is included in driving environment information indicating a driving environment of a vehicle. The driving assist level determination device is configured to acquire, based on the driving environment information, intervention operation information indicating an intervention operation location where the intervention operation is performed, acquire, based on the map information, the evaluation value for each point or section in a target range, and determine, based on the evaluation value and the intervention operation location, an allowable level for each point or section within the target range.
    Type: Application
    Filed: October 22, 2019
    Publication date: May 7, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Taichi KAWANAI, Yasuhiro TAKAGI, Masahiro HARADA, Nobuhide KAMATA, Eiji SAKAGUCHI, Keisuke HOKAI, Hideyuki MATSUI, Kazuhiko KAMIKADO, Yusuke HAYASHI, Hideo FUKAMACHI
  • Publication number: 20200133277
    Abstract: A vehicle control system includes a vehicle control apparatus configured to set a target trajectory of a vehicle in autonomous driving, a manual driving database configured to contain manual driving trajectory information that indicates a manual driving trajectory that is a trajectory of the vehicle in manual driving, a weight acquisition device configured to acquire weight information that indicates weights of the target trajectory and manual driving trajectory, the weights being designated by a user of the vehicle, and a trajectory adjusting device configured to determine an integrated target trajectory by integrating the target trajectory and the manual driving trajectory based on the weights indicated by the weight information. The vehicle control apparatus is configured to control the autonomous driving of the vehicle such that the vehicle follows the integrated target trajectory.
    Type: Application
    Filed: July 22, 2019
    Publication date: April 30, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keisuke HOKAI, Kazuhiko KAMIKADO, Taichi KAWANAI, Masahiro HARADA, Nobuhide KAMATA, Yasuhiro TAKAGI, Hideo FUKAMACHI, Eiji SAKAGUCHI, Hideyuki MATSUI, Yusuke HAYASHI
  • Patent number: 10591922
    Abstract: Arrangements related to operating an autonomous vehicle in view-obstructed environments are described. At least a portion of an external environment of the autonomous vehicle can be sensed to detect one or more objects located therein. An occupant viewable area of the external environment can be determined. It can be determined whether one or more of the detected one or more objects is located outside of the determined occupant viewable area. Responsive to determining that a detected object is located outside of the determined occupant viewable area, one or more actions can be taken. For instance, the action can include presenting an alert within the autonomous vehicle. Alternatively or in addition, the action can include causing a current driving action of the autonomous vehicle to be modified.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: March 17, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Katsuhiro Sakai, Danil V. Prokhorov, Bunyo Okumura, Naoki Nagasaka, Masahiro Harada, Nobuhide Kamata