Patents by Inventor Masahiro Kamata

Masahiro Kamata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190352607
    Abstract: Provided are feeder cell lines that can be used to expand and differentiate B cells in vitro, a method for expanding B cells in vitro comprising culturing the B cells with the feeder cell line, and a method for producing monoclonal antibody in vitro comprising culturing a single B cell with the feeder cell line under sufficient conditions and for sufficient time to induce expansion and differentiation of the B cell into a B cell done secreting antibody.
    Type: Application
    Filed: February 16, 2017
    Publication date: November 21, 2019
    Applicant: Duke University
    Inventors: Hiraku SUGA, Kathleen M. CANDANDO, Evgueni KOUNTIKOV, Masahiro KAMATA, Thomas F. TEDDER, Ayumi YOSHIZAKI, Tomomitsu MIYAGAKI
  • Patent number: 9612350
    Abstract: Vibration transducers, sensors including the vibration transducers, and methods for manufacturing the same. The vibration transducer may include a magnet. The vibration transducer may include a bobbin disposed about the magnet. The vibration transducer may include a first coil disposed about the bobbin. The vibration transducer may include a controllable damping coil disposed about the bobbin. The first coil is movable relative to the magnet. The magnet is polarized with respect to the axis of the vibration transducer.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: April 4, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Masahiro Kamata
  • Patent number: 9507039
    Abstract: A seismic source of the present disclosure includes a first rotation member and a second rotation member having a common axis of rotation and rotated at a same rotational rate in mutually opposite directions. In addition, the seismic source may include a first mass that is eccentrically coupled to the first rotation member and rotates along with the first rotation member. A second mass may be eccentrically coupled to the second rotation member and configured to rotate along with that member. The second mass may be configured such that the center of gravity of the second mass is located radially external to the center of gravity of the first mass relative to the common axis of rotation. The center of gravities of the first and second mass may be located at the same location along a length of the common axis of rotation.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: November 29, 2016
    Assignee: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Patent number: 9435644
    Abstract: Systems, apparatuses and methods for digital compensation for total harmonic distortion in a displacement sensor. The methods can include determining a total harmonic distortion compensation function for a displacement sensor; using the displacement sensor to measure a displacement by generating an output signal with total harmonic distortion; digitizing the distorted output signal to generate distorted output data; applying the total harmonic distortion compensation function to the distorted output data to generate undistorted output data; and outputting the undistorted output data.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: September 6, 2016
    Assignee: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Publication number: 20150300161
    Abstract: A system, method and tool for measuring subsurface waves from a wellbore is provided comprising a source for propagating at least earth waves and a drilling tool. The drilling tool may include a drill string comprising a number of drill pipe sections positionable in the wellbore and a bottom hole assembly. The bottom hole assembly may include a sensor package containing a strain gauge to determine strain measurements of the drill string and a subsurface sensor to determine subsurface measurements of earth waves passing through the earth and drill string waves passing through the drill string. Embodiments of the system may compare the strain measurements to the subsurface measurements in order to distinguish drill string waves from earth waves.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 22, 2015
    Applicant: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Patent number: 9134184
    Abstract: Methods and systems for compensating temperature measurements by a temperature gauge comprising a first temperature sensor and a second reference temperature sensor, having different thermal properties, located in the same temperature environment to be measured. The methods and systems compensate for errors in the measured temperatures due to variations in the reference sensor caused by temperature effects.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: September 15, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Patent number: 9036449
    Abstract: Methods and systems for acoustically determining reservoir parameters of subterranean formations. A tool comprising at least one seismic source or seismic receiver mounted thereon; a conveyance configured for movement of the acoustic tool in a borehole traversing the subterranean formations; and a source retainer configured or designed for permanent deployment in the borehole to removably retain the acoustic tool in the borehole. The source retainer when deployed provides acoustic coupling with the borehole and removably retains the acoustic tool in the borehole so that, over multiple deployments, the acoustic tool is repeatedly deployed at the same predetermined location and orientation relative to the subterranean formation, and with the same acoustic coupling to the borehole.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: May 19, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Masahiro Kamata, Tsunehisa Kimura
  • Patent number: 8913464
    Abstract: Methods and systems utilizing seismic sensors configured or designed for use in seismic signal detection. The seismic sensors output displacement signals of a displacement sensor superimposed on velocity signals generated by a moving coil of the seismic sensors.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 16, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Publication number: 20140336967
    Abstract: Systems, apparatuses and methods for digital compensation for total harmonic distortion in a displacement sensor. The methods can include determining a total harmonic distortion compensation function for a displacement sensor; using the displacement sensor to measure a displacement by generating an output signal with total harmonic distortion; digitizing the distorted output signal to generate distorted output data; applying the total harmonic distortion compensation function to the distorted output data to generate undistorted output data; and outputting the undistorted output data.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Inventor: Masahiro Kamata
  • Publication number: 20140301160
    Abstract: Vibration transducers, sensors including the vibration transducers, and methods for manufacturing the same. The vibration transducer may include a magnet. The vibration transducer may include a bobbin disposed about the magnet. The vibration transducer may include a first coil disposed about the bobbin. The vibration transducer may include a controllable damping coil disposed about the bobbin. The first coil is movable relative to the magnet. The magnet is polarized with respect to the axis of the vibration transducer.
    Type: Application
    Filed: April 8, 2013
    Publication date: October 9, 2014
    Applicant: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Patent number: 8687465
    Abstract: Methods and systems utilizing seismic sensors configured or designed for use in seismic signal detection. An electrical current is applied to a seismic sensor such that the moving coil is located at a neutral position relative to the magnetic field in the seismic sensor to compensate for gravitational acceleration.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: April 1, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Patent number: 8644110
    Abstract: Methods and systems utilizing seismic sensors configured or designed for use in seismic signal detection are provided so as to reduce the occurrence of spurious responses of the sensors. A method of seismic surveying using a seismic sensor may include the steps of deploying the seismic sensor at a location for seismic signal detection and acquiring seismic signals. The seismic signals may include high frequency response signals containing spurious response signals at an identifiable bandwith. The method may further include applying spurious response cancellation based on the bandwidth location of the spurious response signals and generating modified seismic waveforms having extended frequency bandwidth.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: February 4, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Publication number: 20130315032
    Abstract: Methods and systems for acoustically determining reservoir parameters of subterranean formations. A tool comprising at least one seismic source or seismic receiver mounted thereon; a conveyance configured for movement of the acoustic tool in a borehole traversing the subterranean formations; and a source retainer configured or designed for permanent deployment in the borehole to removably retain the acoustic tool in the borehole. The source retainer when deployed provides acoustic coupling with the borehole and removably retains the acoustic tool in the borehole so that, over multiple deployments, the acoustic tool is repeatedly deployed at the same predetermined location and orientation relative to the subterranean formation, and with the same acoustic coupling to the borehole.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Schlumberger Technology Corporation
    Inventors: Masahiro Kamata, Tsunehisa Kimura
  • Patent number: 8526269
    Abstract: Methods and systems for acoustically determining reservoir parameters of subterranean formations. A tool comprising at least one seismic source or seismic receiver mounted thereon; a conveyance configured for movement of the acoustic tool in a borehole traversing the subterranean formations; and a source retainer configured or designed for permanent deployment in the borehole to removably retain the acoustic tool in the borehole. The source retainer when deployed provides acoustic coupling with the borehole and removably retains the acoustic tool in the borehole so that, over multiple deployments, the acoustic tool is repeatedly deployed at the same predetermined location and orientation relative to the subterranean formation, and with the same acoustic coupling to the borehole.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 3, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Masahiro Kamata, Tsunehisa Kimura
  • Publication number: 20120314537
    Abstract: Methods and systems utilizing seismic sensors configured or designed for use in seismic signal detection. An electrical current is applied to a seismic sensor such that the moving coil is located at a neutral position relative to the magnetic field in the seismic sensor to compensate for gravitational acceleration.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 13, 2012
    Inventor: Masahiro Kamata
  • Publication number: 20120294327
    Abstract: Methods and systems for compensating temperature measurements by a temperature gauge comprising a first temperature sensor and a second reference temperature sensor, having different thermal properties, located in the same temperature environment to be measured. The methods and systems compensate for errors in the measured temperatures due to variations in the reference sensor caused by temperature effects.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 22, 2012
    Inventor: Masahiro Kamata
  • Publication number: 20120294116
    Abstract: Methods and systems utilizing seismic sensors configured or designed for use in seismic signal detection are provided so as to reduce the occurrence of spurious responses of the sensors. A method of seismic surveying using a seismic sensor may include the steps of deploying the seismic sensor at a location for seismic signal detection and acquiring seismic signals. The seismic signals may include high frequency response signals containing spurious response signals at an identifiable bandwith. The method may further include applying spurious response cancellation based on the bandwidth location of the spurious response signals and generating modified seismic waveforms having extended frequency bandwidth.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 22, 2012
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: MASAHIRO KAMATA
  • Patent number: 8305845
    Abstract: Methods and systems utilizing seismic sensors configured or designed for use in seismic signal detection. An electrical current is applied to a seismic sensor such that the moving coil is located at a neutral position relative to the magnetic field in the seismic sensor to compensate for gravitational acceleration.
    Type: Grant
    Filed: January 8, 2012
    Date of Patent: November 6, 2012
    Assignee: Schlumberger Technology
    Inventor: Masahiro Kamata
  • Patent number: 8267578
    Abstract: Methods and systems for compensating temperature measurements by a temperature gauge comprising a first temperature sensor and a second reference temperature sensor, having different thermal properties, located in the same temperature environment to be measured. The methods and systems compensate for errors in the measured temperatures due to variations in the reference sensor caused by temperature effects.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: September 18, 2012
    Assignee: Schlumberger Technology Corporation
    Inventor: Masahiro Kamata
  • Publication number: 20120145476
    Abstract: A seismic source of the present disclosure includes a first rotation member and a second rotation member having a common axis of rotation and rotated at a same rotational rate in mutually opposite directions. In addition, the seismic source may include a first mass that is eccentrically coupled to the first rotation member and rotates along with the first rotation member. A second mass may be eccentrically coupled to the second rotation member and configured to rotate along with that member. The second mass may be configured such that the center of gravity of the second mass is located radially external to the center of gravity of the first mass relative to the common axis of rotation. The center of gravities of the first and second mass may be located at the same location along a length of the common axis of rotation.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 14, 2012
    Inventor: MASAHIRO KAMATA