Patents by Inventor Masahiro Nonoguchi

Masahiro Nonoguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867646
    Abstract: Provided is a total reflection X-ray fluorescence spectrometer which has high analysis sensitivity and analysis speed. The total reflection X-ray fluorescence spectrometer includes: an X-ray source that has an electron beam focal point having an effective width in a direction parallel to a surface of a sample, and orthogonal to an X-ray irradiation direction, that is larger than a dimension in the irradiation direction; a reflective optic that has an effective width in the orthogonal direction that is larger than that of the electron beam focal point, and has a curved surface in the irradiation direction; and a plurality of detectors that are arranged in a row in the orthogonal direction, and are configured to measure intensities of fluorescent X-rays emitted from the sample irradiated with primary X-rays focused by the reflective optic.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: January 9, 2024
    Assignee: RIGAKU CORPORATION
    Inventors: Makoto Kambe, Kazuhiko Omote, Toshifumi Higuchi, Tsutomu Tada, Hajime Fujimura, Masahiro Nonoguchi, Licai Jiang, Boris Verman, Yuriy Platonov
  • Publication number: 20230400423
    Abstract: Provided is a total reflection X-ray fluorescence spectrometer which has high analysis sensitivity and analysis speed. The total reflection X-ray fluorescence spectrometer includes: an X-ray source that has an electron beam focal point having an effective width in a direction parallel to a surface of a sample, and orthogonal to an X-ray irradiation direction, that is larger than a dimension in the irradiation direction; a reflective optic that has an effective width in the orthogonal direction that is larger than that of the electron beam focal point, and has a curved surface in the irradiation direction; and a plurality of detectors that are arranged in a row in the orthogonal direction, and are configured to measure intensities of fluorescent X-rays emitted from the sample irradiated with primary X-rays focused by the reflective optic.
    Type: Application
    Filed: November 1, 2021
    Publication date: December 14, 2023
    Inventors: Makoto KAMBE, Kazuhiko OMOTE, Toshifumi HIGUCHI, Tsutomu TADA, Hajime FUJIMURA, Masahiro NONOGUCHI, Licai JIANG, Boris VERMAN, Yuriy PLATONOV
  • Patent number: 11636995
    Abstract: An X-ray generation device includes: a sealed X-ray tube including a cathode and an anode; a magnetic field generation portion applying a magnetic field to the electron beam, the magnetic field extending in a first direction, which crosses a traveling direction of the electron beam; and a rotary drive system configured to rotate the sealed X-ray tube, the anode having a surface including a first region and a second region arranged on one side and another side, with respect to a straight division line, the first region having a first metal arranged therein, and the second region having a second metal arranged therein, the second metal being different from the first metal, and by means of the rotary drive system rotating the sealed X-ray tube, the sealed X-ray tube being arranged with respect to the magnetic field generation portion so that the straight division line lies along the first direction.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 25, 2023
    Assignee: RIGAKU CORPORATION
    Inventors: Masahiro Nonoguchi, Masashi Kageyama
  • Publication number: 20210217574
    Abstract: An X-ray generation device includes: a sealed X-ray tube including a cathode and an anode; a magnetic field generation portion applying a magnetic field to the electron beam, the magnetic field extending in a first direction, which crosses a traveling direction of the electron beam; and a rotary drive system configured to rotate the sealed X-ray tube, the anode having a surface including a first region and a second region arranged on one side and another side, with respect to a straight division line, the first region having a first metal arranged therein, and the second region having a second metal arranged therein, the second metal being different from the first metal, and by means of the rotary drive system rotating the sealed X-ray tube, the sealed X-ray tube being arranged with respect to the magnetic field generation portion so that the straight division line lies along the first direction.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 15, 2021
    Inventors: Masahiro NONOGUCHI, Masashi KAGEYAMA
  • Patent number: 10481110
    Abstract: A device that uses a grating to carry out high sensitivity radiographic image shooting using the wave nature of x-rays or the like can shoot a sample that moves relative to a device. A pixel value computation section determines, using a plurality of intensity distribution images of a sample that moves in a direction that traverses the path of radiation, whether or not a point (p, q) on the sample belongs in a region (Ak) on each intensity distribution image. Further, the pixel value computation section obtains a sum pixel value (Jk) for each region (Ak) by summing pixel values on the each intensity distribution image for point (p, q) that belongs to each region (Ak). An image computation section creates a required radiographic image using the sum pixel values (Jk) of the region (Ak).
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 19, 2019
    Assignees: Tohoku University, Rigaku Corporation
    Inventors: Atsushi Momose, Takafumi Koike, Masahiro Nonoguchi
  • Patent number: 10283313
    Abstract: Provided are an X-ray generator capable of easily measuring a beam size of an electron beam on an electron target, and an adjustment method therefor. The X-ray generator includes an electron target including a first metal, a second metal different from the first metal, and a third metal different from the second metal, which are sequentially arranged side by side along a first direction in a continuous manner.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: May 7, 2019
    Assignee: RIGAKU CORPORATION
    Inventors: Masahiro Nonoguchi, Manabu Noguchi, Koichi Kato, Ryuji Nishida, Yuji Kusaka, Masashi Kageyama, Tomohiro Chaki
  • Publication number: 20180356355
    Abstract: A device that uses a grating to carry out high sensitivity radiographic image shooting using the wave nature of x-rays or the like can shoot a sample that moves relative to a device. A pixel value computation section determines, using a plurality of intensity distribution images of a sample that moves in a direction that traverses the path of radiation, whether or not a point (p, q) on the sample belongs in a region (Ak) on each intensity distribution image. Further, the pixel value computation section obtains a sum pixel value (Jk) for each region (Ak) by summing pixel values on the each intensity distribution image for point (p, q) that belongs to each region (Ak). An image computation section creates a required radiographic image using the sum pixel values (Jk) of the region (Ak).
    Type: Application
    Filed: August 19, 2016
    Publication date: December 13, 2018
    Inventors: Atsushi Momose, Takafumi Koike, Masahiro Nonoguchi
  • Publication number: 20170004950
    Abstract: Provided are an X-ray generator capable of suppressing effects of a fluctuation in a disturbance magnetic field and an adjustment method therefor. The X-ray generator includes: an electron-beam generating unit configured to emit an electron beam; an electron target onto which the electron beam is radiated to generate an X-ray; an electron-beam adjusting unit, which is arranged between the electron-beam generating unit and the electron target, and is configured to adjust the electron beam emitted from the electron-beam generating unit; an electron-beam deflecting unit, which is arranged between the electron-beam adjusting unit and the electron target, and is configured to deflect the electron beam to be radiated onto the electron target; and a magnetic sensor arranged in a vicinity of a region of the electron target, onto which the electron beam is radiated, so as to be away from the electron beam.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 5, 2017
    Inventor: Masahiro NONOGUCHI
  • Publication number: 20160336140
    Abstract: Provided are an X-ray generator capable of easily measuring a beam size of an electron beam on an electron target, and an adjustment method therefor. The X-ray generator includes an electron target including a first metal, a second metal different from the first metal, and a third metal different from the second metal, which are sequentially arranged side by side along a first direction in a continuous manner.
    Type: Application
    Filed: May 3, 2016
    Publication date: November 17, 2016
    Inventors: Masahiro NONOGUCHI, Manabu NOGUCHI, Koichi KATO, Ryuji NISHIDA, Yuji KUSAKA, Masashi KAGEYAMA, Tomohiro CHAKI
  • Patent number: 8913719
    Abstract: An electron gun having: a cathode for emitting electrons; a first Wehnelt electrode equipped with a first aperture through which electrons are allowed to pass; and a second Wehnelt electrode that is equipped with a second aperture disposed at a predetermined position with respect to the cathode and the first aperture, and that is furnished at a position closer to the cathode than the first Wehnelt electrode, wherein: the cathode and the second Wehnelt electrode are included within a single assembly constituting a unitary body; and the assembly is detachably attached to the first Wehnelt electrode. Replacement of the cathode can be performed by detaching the cathode unit from the first Wehnelt electrode, and then ejecting the cathode unit out from the Wehnelt cover. The emitter of the cathode can thereby be reliably positioned with respect to the second aperture.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: December 16, 2014
    Assignee: Rigaku Corporation
    Inventors: Masaru Kuribayashi, Masahiro Nonoguchi, Masashi Kageyama
  • Patent number: 8908833
    Abstract: Provided is an X-ray generator comprising a cathode for generating electrons; a rotating anode having a cylindrical electron impingement surface, an X-ray focal point being formed by a region in which the electrons impinge upon the electron impingement surface; and a Wehnelt electrode for imparting an electric field to the electrons emitted from the cathode. The Wehnelt electrode has a field formation surface for forming the electric field, and an electron passage aperture formed by the field formation surface. The field formation surface of the Wehnelt electrode is inclined with respect to a plane tangent to an outer circumferential surface of the rotating anode at the center of the X-ray focal point. The center of the cathode is in a plane orthogonal to the field formation surface and aligned with the center of the electron passage aperture.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: December 9, 2014
    Assignee: Rigaku Corporation
    Inventors: Masahiro Nonoguchi, Masashi Kageyama, Tomohiro Chaki, Masaaki Yamakata, Koichi Kato, Masaru Kuribayashi
  • Patent number: 8879690
    Abstract: Provided is an X-ray generator for generating X-rays from an X-ray focal point that is a region in which electrons emitted from a filament impinge upon a rotating anode. The X-ray generator has a Wehnelt electrode for surrounding the filament, an attachment part formed integrally with the Wehnelt electrode, a pedestal to which the attachment part is attached, and a casing for housing the pedestal and the anticathode. The width of the space in which the anticathode is housed by the casing is less than the width of the space in which the pedestal is housed by the casing. The Wehnelt electrode extends into the space in which the anticathode is housed by the casing, in a state in which the attachment part is attached to the pedestal.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: November 4, 2014
    Assignee: Rigaku Corporation
    Inventors: Tomohiro Chaki, Koichi Kato, Masahiro Nonoguchi, Masashi Kageyama, Masaru Kuribayashi
  • Patent number: 8644451
    Abstract: An X-ray generating apparatus is disclosed which includes a tube body having a vacuum interior, an electron source provided within the tube body to generate an electron beam, a target, within the tube body that is irradiated with the electron beam to generate an X-ray, and an X-ray window for taking out the X-ray generated outside of the tube body. A plurality of grooves are formed on a surface of a member building up the target. The grooves each have a fine width and are inclined by a predetermined angle (?), from a direction perpendicular to an elongating direction of the grooves, so that they bridge over the plural numbers of grooves. The X-ray generating apparatus is configured such that a multi-line X-ray generating from the plural numbers of multi-line targets, which are formed between the grooves, emits at a predetermined extraction angle (?), passing through the X-ray window. An inspection apparatus which includes the X-ray generating apparatus is also disclosed.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: February 4, 2014
    Inventors: Shozo Aoki, Masahiro Nonoguchi
  • Publication number: 20130259197
    Abstract: An electron gun having: a cathode for emitting electrons; a first Wehnelt electrode equipped with a first aperture through which electrons are allowed to pass; and a second Wehnelt electrode that is equipped with a second aperture disposed at a predetermined position with respect to the cathode and the first aperture, and that is furnished at a position closer to the cathode than the first Wehnelt electrode, wherein: the cathode and the second Wehnelt electrode are included within a single assembly constituting a unitary body; and the assembly is detachably attached to the first Wehnelt electrode. Replacement of the cathode can be performed by detaching the cathode unit from the first Wehnelt electrode, and then ejecting the cathode unit out from the Wehnelt cover. The emitter of the cathode can thereby be reliably positioned with respect to the second aperture.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: Rigaku Corporation
    Inventors: Masaru KURIBAYASHI, Masahiro Nonoguchi, Masashi Kageyama
  • Publication number: 20120163550
    Abstract: Provided is an X-ray generator for generating X-rays from an X-ray focal point that is a region in which electrons emitted from a filament impinge upon a rotating anode. The X-ray generator has a Wehnelt electrode for surrounding the filament, an attachment part formed integrally with the Wehnelt electrode, a pedestal to which the attachment part is attached, and a casing for housing the pedestal and the anticathode. The width of the space in which the anticathode is housed by the casing is less than the width of the space in which the pedestal is housed by the casing. The Wehnelt electrode extends into the space in which the anticathode is housed by the casing, in a state in which the attachment part is attached to the pedestal.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 28, 2012
    Applicant: RIGAKU CORPORATION
    Inventors: Tomohiro Chaki, Koichi Kato, Masahiro Nonoguchi, Masashi Kageyama, Masaru Kuribayashi
  • Publication number: 20120163548
    Abstract: Provided is an X-ray generator comprising a cathode for generating electrons; a rotating anode having a cylindrical electron impingement surface, an X-ray focal point being formed by a region in which the electrons impinge upon the electron impingement surface; and a Wehnelt electrode for imparting an electric field to the electrons emitted from the cathode. The Wehnelt electrode has a field formation surface for forming the electric field, and an electron passage aperture formed by the field formation surface. The field formation surface of the Wehnelt electrode is inclined with respect to a plane tangent to an outer circumferential surface of the rotating anode at the center of the X-ray focal point. The center of the cathode is in a plane orthogonal to the field formation surface and aligned with the center of the electron passage aperture.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 28, 2012
    Applicant: RIGAKU CORPORATION
    Inventors: Masahiro NONOGUCHI, Masashi Kageyama, Tomohiro Chaki, Masaaki Yamakata, Koichi Kato, Masaru Kuribayashi
  • Publication number: 20110235781
    Abstract: An X-ray generating apparatus is disclosed which includes a tube body having a vacuum interior, an electron source provided within the tube body to generate an electron beam, a target, within the tube body that is irradiated with the electron beam to generate an X-ray, and an X-ray window for taking out the X-ray generated outside of the tube body. A plurality of grooves are formed on a surface of a member building up the target. The grooves each have a fine width and are inclined by a predetermined angle (?), from a direction perpendicular to an elongating direction of the grooves, so that they bridge over the plural numbers of grooves. The X-ray generating apparatus is configured such that a multi-line X-ray generating from the plural numbers of multi-line targets, which are formed between the grooves, emits at a predetermined extraction angle (?), passing through the X-ray window. An inspection apparatus which includes the X-ray generating apparatus is also disclosed.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 29, 2011
    Inventors: Shozo Aoki, Masahiro Nonoguchi
  • Patent number: 7352846
    Abstract: A coiled filament for an X-ray tube has a varied coil pitch to obtain a good uniformity of the longitudinal temperature distribution. The filament has a central region including plural turns having a same coil pitch, and end regions which include plural turns each of which has a coil pitch smaller than the coil pitch of the central region. The coil pitches of the plural turns of the end regions are reduced one by one by a same variation from a turn close to the central region toward an outermost turn. A value of ?p/p is within a range of 0.015 to 0.1 and k/n is within a range of 0.3 to 0.8, where p is the coil pitch of the central region, ?p is the coil pitch variation of the end regions, n is a total number of turns of the filament, and k is a sum of numbers of turns of the end regions. The k/n preferably satisfies the following equation: k/n=0.72?4.66(?p/p)±0.12.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: April 1, 2008
    Assignee: Rigaku Corporation
    Inventors: Masaru Kuribayashi, Masahiro Nonoguchi, Naohisa Osaka, Yoji Kobayashi
  • Patent number: 7333592
    Abstract: An X-ray tube includes an electron gun in which a Wehnelt electrode is formed with an opening asymmetric about an electron emitter. The electron emitter is an elongate coil filament which is disposed inside the elongate opening of the Wehnelt electrode. The opening has two longer sides positioned asymmetrically about a center-of-width line of the filament. Each of the two longer sides is curved in the same direction as viewed in a direction normal to the front face of the Wehnelt electrode. The two longer sides have curvature radii R1 and R2 different from each other, so that an electron-beam-irradiation region on a target is not curved but becomes almost straight.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: February 19, 2008
    Assignee: Rigaku Corp.
    Inventors: Masahiro Nonoguchi, Masaru Kuribayashi
  • Patent number: 7271530
    Abstract: A filament for an X-ray tube has a varied wire diameter but has a constant coil outside diameter to obtain a good uniformity of the longitudinal temperature distribution of the filament. The filament has a wire diameter d which is gradually reduced from the longitudinal central region to the longitudinal ends while the coil outside diameter D is fixed along the longitudinal direction. The wire is polished at only the inside of the coil to reduce the wire diameter. In order to make the longitudinal temperature distribution uniform as far as possible, the difference ?d between the wire diameter dmax at the longitudinal central region and the wire diameter dmin at the longitudinal ends should satisfy the following limitation: ?d/dmax=0.041 to 0.145.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: September 18, 2007
    Assignee: Rigaku Corporation
    Inventors: Masaru Kuribayashi, Masahiro Nonoguchi, Naohisa Osaka, Yoji Kobayashi