Patents by Inventor Masahiro Osugi

Masahiro Osugi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210000146
    Abstract: A system and method for food sterilization utilizing microwave-generated plasma. The plasma is used to irradiate food to destroy pathogens on the food, whereby the food is sterilized. The plasma may be a low-temperature, high-pressure plasma.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Inventors: Jinqiu Zhang, Xiaobo Huang, Masahiro Osugi
  • Publication number: 20210002759
    Abstract: A system includes a structure including an upper chamber linked to a lower chamber, the upper chamber including a gas inlet configured to enable a gas to enter the upper chamber, the lower chamber including a plasma outlet, a microwave generator configured to deliver a microwave to the upper chamber causing atoms in the gas to ionize to generate a charged particle microwave plasma, a hollow cathode centrally positioned within the lower chamber and an anode surrounding an interior wall of the lower chamber, and a power source for generating power, the power flowing between the anode and the hollow cathode causing atoms in the gas to ionize to generate a charged particle hollow cathode plasma.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Inventors: Jinqiu Zhang, Xiaobo Huang, Masahiro Osugi
  • Patent number: 9431038
    Abstract: A method provides a magnetic device having an air-bearing surface (ABS) location. A layer including first and second sublayers is provided. The first sublayer includes the ABS location. The second sublayer recessed from the ABS location such that part of the first sublayer is between the second sublayer and the ABS location. The first sublayer has a rear surface oriented at a nonzero, acute angle from a surface perpendicular to the ABS location. A trench is formed in the layer. The trench has a bottom, a top and sidewalls. The sidewalls form a first angle with a direction perpendicular to the bottom at the ABS location. The sidewalls form a second angle with the direction in part of the second sublayer. The second angle is smaller than the first angle. The sidewall angle varies along the rear surface of the first sublayer. A main pole is provided in the trench.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: August 30, 2016
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Jinqiu Zhang, Xiaoyu Yang, Feng Liu, Xiaojun Zhang, Krishna Chetry, Masahiro Osugi, Ning Wu
  • Publication number: 20160055865
    Abstract: A method for fabricating a magnetic recording transducer is described. The magnetic recording transducer has an underlayer and at least one layer on the underlayer. The layer(s) are capable of including an aperture that exposes a portion of the underlayer. The method includes providing a neutralized aqueous solution having a chemical buffer therein. The chemical buffer forms a nonionic full film corrosion inhibitor. The method also includes exposing a portion of the magnetic recording transducer including the layer(s) to the neutralized aqueous solution including the chemical buffer. In one aspect this exposure occurs through a chemical mechanical planarization.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: MASAHIRO OSUGI, LILY YAO, MING JIANG, GUANGHONG LUO, WAI-MING J. KAN
  • Patent number: 9196283
    Abstract: A method for fabricating a magnetic recording transducer is described. The magnetic recording transducer has an underlayer and at least one layer on the underlayer. The layer(s) are capable of including an aperture that exposes a portion of the underlayer. The method includes providing a neutralized aqueous solution having a chemical buffer therein. The chemical buffer forms a nonionic full film corrosion inhibitor. The method also includes exposing a portion of the magnetic recording transducer including the layer(s) to the neutralized aqueous solution including the chemical buffer. In one aspect this exposure occurs through a chemical mechanical planarization.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 24, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Masahiro Osugi, Lily Yao, Ming Jiang, Guanghong Luo, Wai-Ming J. Kan
  • Patent number: 9138790
    Abstract: A method for measuring flatness of a sheet material in which a light and dark pattern composed by a light portion and a dark portion is projected onto a surface of the sheet material running in a longitudinal direction, a pattern image is acquired by photographing the light and dark pattern by an image pickup device having an image pickup visual field larger than a width of the sheet material, and the flatness of the sheet material is measured by analyzing the acquired pattern image. A staggered pattern is used for the projecting step and for light to be specularly reflected for receipt by the image pickup device. Calculating the flatness also includes steps of setting a shape measurement line, averaging picture element concentrations, calculating a distribution of the concentrations, and calculating the flatness based on surface shape using the distribution.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: September 22, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshito Isei, Tomoya Kato, Masahiro Osugi
  • Patent number: 9053735
    Abstract: A method fabricates a magnetic transducer having air-bearing surface (ABS) location and an intermediate layer having a trench therein. The trench has a shape and location corresponding to a main pole. The method includes depositing at least one main pole layer. A portion of the main pole layer(s) is in the trench. A refill layer is provided on the main pole layer(s). The main pole layer(s) may not be patterned after being provided and before the refill layer is provided. At least the refill layer is planarized. A full-film metal planarization is performed for at least one of the refill layer and the at least one main pole layer. The full-film metal planarization may include a bulk ion mill and/or ion beam scan.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: June 9, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ronghui Zhou, Lily Yao, Masahiro Osugi, Degang Cheng, Ming Jiang
  • Patent number: 9003846
    Abstract: Measuring sheet material flatness includes projecting a bright and dark pattern made up of bright parts and dark parts onto a sheet material surface travelling in a lengthwise direction, picking up an image of pattern with image pickup device to acquire a pattern image, with the pickup device having a field of view larger than a sheet material width. The acquired pattern image is analyzed, wherein a pattern in which a bright part is disposed at a predetermined set pitch respectively in longitudinal and lateral directions is formed by an LED light at a predetermined pitch respectively in the longitudinal and lateral directions. The pattern is projected onto the surface such that the longitudinal direction of the pattern lies along a lengthwise direction of the sheet material, and the lateral direction of the pattern lies along a width direction of the sheet material.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: April 14, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshito Isei, Tomoya Kato, Masahiro Osugi, Hideyuki Takahashi
  • Publication number: 20140007634
    Abstract: A method for measuring flatness of a sheet material in which a light and dark pattern composed by a light portion and a dark portion is projected onto a surface of the sheet material running in a longitudinal direction, a pattern image is acquired by photographing the light and dark pattern by an image pickup device having an image pickup visual field larger than a width of the sheet material, and the flatness of the sheet material is measured by analyzing the acquired pattern image. A staggered pattern is used for the projecting step and for light to be specularly reflected for receipt by the image pickup device. Calculating the flatness also includes steps of setting a shape measurement line, averaging picture element concentrations, calculating a distribution of the concentrations, and calculating the flatness based on surface shape using the distribution.
    Type: Application
    Filed: May 22, 2013
    Publication date: January 9, 2014
    Inventors: Yoshito ISEI, Tomoya Kato, Masahiro Osugi
  • Patent number: 8578594
    Abstract: A process for fabricating a magnetic recording transducer for use in a data storage system comprises providing a substrate, an underlayer and a first nonmagnetic intermediate layer deposited to a first thickness on and in contact with the underlayer, performing a first scanning polishing on a first section of the first intermediate layer to planarize the first section of the first intermediate layer to a second thickness, providing a main pole in the planarized first section of the first intermediate layer, providing a first pattern of photoresist on and in contact with the first section of the first intermediate layer, the pattern comprising an aperture to define a side shield trench, performing a wet etch to remove at least a portion of the first intermediate layer thereby exposing at least one of the plurality of main pole sides, and depositing side shield material in the side shield trench.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 12, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ming Jiang, Ronghui Zhou, Guanghong Luo, Masahiro Osugi, Danning Yang
  • Patent number: 8506828
    Abstract: A method and system for fabricating a read sensor on a substrate for a read transducer is described. A read sensor stack is deposited on the substrate. A mask is provided on the on the read sensor stack. The mask has a pattern that covers a first portion of the read sensor stack corresponding to the read sensor, covers a second portion of the read sensor stack distal from the read sensor, and exposes a third portion of the read sensor stack between the first and second portions. The read sensor is defined from the read sensor stack. A hard bias layer is deposited. An aperture free mask layer including multiple thicknesses is provided. A focused ion beam scan (FIBS) polishing step is performed on the mask and hard bias layers to remove a portion of the mask and hard bias layers based on the thicknesses.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 13, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Masahiro Osugi, Guanghong Luo, Ronghui Zhou, Danning Yang, Dujiang Wan, Ming Jiang
  • Patent number: 8480911
    Abstract: A read sensor for a read transducer is fabricated. The read transducer has field and device regions. A read sensor stack is deposited. A mask covering part of the stack corresponding to the read sensor is provided. The read sensor having inboard and outboard junction angles is defined from the stack in a track width direction. A critical junction (CJ) focused ion beam scan (FIBS) polishing that removes part of the read sensor based on the junction angles is performed. A hard bias structure is deposited and the transducer planarized. A remaining portion of the mask is removed. A stripe height mask covering part of the read sensor and hard bias structure in a stripe height direction is provided. The read sensor stripe height is defined. A tunneling magnetoresistance (TMR) FIBS polishing that removes part of the stack in the field region is performed. An insulating layer is provided.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 9, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Masahiro Osugi, Guanghong Luo, Lily Yao, Ming Jiang
  • Patent number: 8459073
    Abstract: A method for measuring flatness of a sheet material in which a light and dark pattern composed by a light portion and a dark portion is projected onto a surface of the sheet material running in a longitudinal direction, a pattern image is acquired by photographing the light and dark pattern by an image pickup device having an image pickup visual field larger than a width of the sheet material, and the flatness of the sheet material is measured by analyzing the acquired pattern image. A staggered pattern is used for the projecting step and for light to be specularly reflected for receipt by the image pickup device. Calculating the flatness also includes steps of setting a shape measurement line, averaging picture element concentrations, calculating a distribution of the concentrations, and calculating the flatness based on surface shape using the distribution.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: June 11, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshito Isei, Tomoya Kato, Masahiro Osugi
  • Publication number: 20130098127
    Abstract: Measuring sheet material flatness includes projecting a bright and dark pattern P made up of bright parts and dark parts onto a sheet material surface S travelling in a lengthwise direction, picking up an image of pattern P with image pickup device to acquire a pattern image, with the pickup device having a field of view larger than a sheet material width. The acquired pattern image is analyzed, wherein a pattern P in which a bright part is disposed at a predetermined set pitch respectively in longitudinal and lateral directions is formed by an LED light at a predetermined pitch respectively in the longitudinal and lateral directions. The pattern P is projected onto the surface such that the longitudinal direction of the pattern P lies along a lengthwise direction of the sheet material, and the lateral direction of the pattern P lies along a width direction of the sheet material.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 25, 2013
    Inventors: Yoshito ISEI, Tomoya KATO, Masahiro OSUGI, Hideyuki TAKAHASHI
  • Patent number: 8335057
    Abstract: According to one embodiment, a CPP magnetoresistive head includes a magnetoresistive film comprising a free layer above a non-magnetic intermediate layer and a fixed layer below the non-magnetic intermediate layer, wherein the magnetoresistive film is between a lower magnetic shield layer and an upper magnetic shield layer. The CPP magnetoresistive head also includes a domain control film on each side of the magnetoresistive film, wherein a sense current flows through the magnetoresistive film between the upper magnetic shield layer and the lower magnetic shield layer. The CPP magnetoresistive head also includes a high heat conductivity layer, and a heat dissipation layer having a high heat conductivity and a low linear expansion coefficient, the heat dissipation layer being disposed at the back in a device height direction of the magnetoresistive film and on each side of the domain control film.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: December 18, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Masahiro Osugi, Takayoshi Ohtsu, Shigeo Fujita, Katsuro Watanabe, Koji Kataoka
  • Publication number: 20120304454
    Abstract: A process for fabricating a magnetic recording transducer for use in a data storage system comprises providing a substrate, an underlayer and a first nonmagnetic intermediate layer deposited to a first thickness on and in contact with the underlayer, performing a first scanning polishing on a first section of the first intermediate layer to planarize the first section of the first intermediate layer to a second thickness, providing a main pole in the planarized first section of the first intermediate layer, providing a first pattern of photoresist on and in contact with the first section of the first intermediate layer, the pattern comprising an aperture to define a side shield trench, performing a wet etch to remove at least a portion of the first intermediate layer thereby exposing at least one of the plurality of main pole sides, and depositing side shield material in the side shield trench.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Applicant: WESTERN DIGITAL (FREMONT), LLC
    Inventors: MING JIANG, RONGHUI ZHOU, GUANGHONG LUO, MASAHIRO OSUGI, DANNING YANG
  • Publication number: 20120204614
    Abstract: A method for measuring flatness of a sheet material in which a light and dark pattern composed by a light portion and a dark portion is projected onto a surface of the sheet material running in a longitudinal direction, a pattern image is acquired by photographing the light and dark pattern by an image pickup device having an image pickup visual field larger than a width of the sheet material, and the flatness of the sheet material is measured by analyzing the acquired pattern image. A staggered pattern is used for the projecting step and for light to be specularly reflected for receipt by the image pickup device. Calculating the flatness also includes steps of setting a shape measurement line, averaging picture element concentrations, calculating a distribution of the concentrations, and calculating the flatness based on surface shape using the distribution.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 16, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Yoshito ISEI, Tomoya KATO, Masahiro OSUGI
  • Patent number: 7859799
    Abstract: Embodiments in accordance with the present invention reduce the influence of etching damage at junction edge of a magnetoresistive film in the sensor height direction, lower the deterioration of dielectric breakdown voltage between an upper magnetic shield layer and a lower magnetic shield layer and instability of reproducing property resulting from shield process, and maintain electrostatic capacity to a small value in a CPP magnetoresistive head. In an embodiment of a magnetoresistive head of the present invention, length in the sensor height direction of bottom surface of a pinning layer is longer than the length in the sensor height direction of bottom surface of a first ferromagnetic layer.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: December 28, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Katsuro Watanabe, Taku Shintani, Kazuhiro Ueda, Masahiro Osugi
  • Publication number: 20100046121
    Abstract: According to one embodiment, a CPP magnetoresistive head includes a magnetoresistive film comprising a free layer above a non-magnetic intermediate layer and a fixed layer below the non-magnetic intermediate layer, wherein the magnetoresistive film is between a lower magnetic shield layer and an upper magnetic shield layer. The CPP magnetoresistive head also includes a domain control film on each side of the magnetoresistive film, wherein a sense current flows through the magnetoresistive film between the upper magnetic shield layer and the lower magnetic shield layer. The CPP magnetoresistive head also includes a high heat conductivity layer, and a heat dissipation layer having a high heat conductivity and a low linear expansion coefficient, the heat dissipation layer being disposed at the back in a device height direction of the magnetoresistive film and on each side of the domain control film.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 25, 2010
    Inventors: Masahiro Osugi, Takayoshi Ohtsu, Shigeo Fujita, Katsuro Watanabe, Koji Kataoka
  • Patent number: 7561384
    Abstract: A high output magneto-resistive sensor is provided by suppressing leftover resist mask after lift-off and generation of a fence, and by making it easy to remove the redepositions deposited on the side wall in the track width direction or on the side wall in the sensor height direction of the magnetoresistive film. As a means to solve a fence and lift-off leftover of a resist in a process for forming a track and a process for forming a sensor height, a stopper layer is provided on the magnetoresistive film and the stopper layer on the refill film, and performing lift-off by CMP. By using a metallic material which has a small CMP polishing rate for at least the first stopper layer, the magnetoresistive film and the first stopper layer can be etched simultaneously and a pattern formed. As a result, decrease of the height of the resist mask by RIE can be suppressed and lift-off leftover can be prevented.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: July 14, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Masahiro Osugi, Taku Shintani, Katsuro Watanabe, Nobuo Yoshida