Patents by Inventor Masahiro Seguchi

Masahiro Seguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210226499
    Abstract: A field coil type rotating electric machine includes a field coil having first and second windings connected in series with each other, a rotor having main poles on which the first and second windings are wound, and a stator having a stator coil comprised of phase windings to which harmonic currents are respectively supplied to induce field current in the field coil. In the rotor, there are formed a series resonant circuit including the first winding and a capacitor and a parallel resonant circuit including the second winding and the capacitor. The first winding is radially located closer to the stator than the second winding is. Moreover, N1<N2 and 120°<?s<240°, where N1 and N2 are respectively the numbers of turns of the first and second windings and ?s is a phase offset between electric currents flowing respectively in the series and parallel resonant circuits.
    Type: Application
    Filed: March 18, 2021
    Publication date: July 22, 2021
    Applicant: DENSO CORPORATION
    Inventor: Masahiro SEGUCHI
  • Publication number: 20210226489
    Abstract: A field coil type rotating electric machine includes a stator and a rotor. The stator includes a stator core, stator teeth arranged in a circumferential direction and each radially protruding from the stator core, and a stator coil wound on the stator teeth. The rotor includes a rotor core, main poles arranged in the circumferential direction and each radially protruding from the rotor core, and a field coil wound on the main poles. Each of the stator teeth and the main poles extends in an axial direction. Each of the main poles has a pair of main-pole end portions located respectively at circumferential ends of the main pole and both radially facing the stator. For each of the main poles, in at least one of the main-pole end portions of the main pole, there is formed at least one cut for part of an axial length of the main pole.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 22, 2021
    Applicant: DENSO CORPORATION
    Inventor: Masahiro SEGUCHI
  • Patent number: 11050330
    Abstract: A field winding type rotary machine includes a stator having a stator core and a stator coil wound on the stator core, a rotor having a rotor core and a rotor field coil wound on the rotor core, and a rectifier element connected between both ends of the rotor field coil. The field winding type rotary machine includes a capacitor having a first terminal connected to an anode terminal of the rectifier element and a second terminal connected to any point of the rotor field coil.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: June 29, 2021
    Assignee: DENSO CORPORATION
    Inventor: Masahiro Seguchi
  • Publication number: 20200373823
    Abstract: A field coil type rotating electric machine includes a rotor where both a series resonant circuit including a first winding and a capacitor and a parallel resonant circuit including a second winding and the capacitor are formed. The first winding is radially located closer than the second winding to a stator. The capacitance of the capacitor and the ratio of the number of turns of the second winding to the number of turns of the first winding are set to have the amplitude of a total resultant magnetic flux lower than the amplitude of a field resultant magnetic flux. The total resultant magnetic flux is the resultant of the field resultant magnetic flux and magnetic flux generated by harmonic currents flowing in phase windings of a stator coil. The field resultant magnetic flux is the resultant of magnetic fluxes generated by harmonic currents flowing in the first and second windings.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Applicant: DENSO CORPORATION
    Inventor: Masahiro SEGUCHI
  • Publication number: 20200373822
    Abstract: In a rotating electric machine, a stator includes a stator winding, a field winding includes a series-connection body including a plurality of winding portions, and a rotor includes main pole portions protruding from a rotor core in a radial direction. A harmonic current for inducing a field current in the field winding flows to the stator winding. A rectifying element is connected in series to the field winding, configures a closed circuit with the field winding, and rectifies the field current that flows to the field winding to flow in one direction. In a capacitor, a first end is connected to a connection point between adjacent winding portions and a second end is connected to either of both ends of the rectifying element. A partitioning portion is disposed between at least a single set of adjacent winding portions among the plurality of winding portions and includes a magnetic material.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Applicant: DENSO CORPORATION
    Inventor: Masahiro SEGUCHI
  • Patent number: 10756661
    Abstract: A field winding type rotating electric machine, whose power factor is cos ?, includes a stator, a rotor with a field winding, a rectifying element, a drive unit and a control unit. When performing rectangular-wave or overmodulation energization, the control unit generates a voltage pulse pair, which induces a current pulse pair, by: setting a reference time to the center of an ON duration or OFF duration of a control signal of a first phase; and providing a temporary ON duration and a temporary OFF duration after a predetermined angle from the reference time. The predetermined angle is within a predetermined range including cos?1 ? in electrical angle. The temporary ON duration is provided to temporarily turn ON a control signal of a second phase during an OFF duration thereof. The temporary OFF duration is provided to temporarily turn OFF a control signal of a third phase during an ON duration thereof.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 25, 2020
    Assignee: DENSO CORPORATION
    Inventors: Masahiro Seguchi, Junichi Nakazono
  • Publication number: 20200251940
    Abstract: A field coil type rotating electric machine includes a field coil having a serially-connected coil section pair consisting of first and second coil sections, a diode having its cathode and anode respectively connected to opposite ends of the serially-connected coil section pair, a rotating shaft, and a rotor having main pole portions radially protruding from a rotor core. In the rotating electric machine, there are formed both a series resonance circuit including the first coil section and at least one capacitor and a parallel resonance circuit including the second coil section and the at least one capacitor. Electronic components electrically connected with the field coil, which include the diode and the at least one capacitor, are arranged so that an overall center of gravity of all the electronic components is located closer than each of centers of gravity of the electronic components to a central axis of the rotating shaft.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 6, 2020
    Applicant: DENSO CORPORATION
    Inventor: Masahiro SEGUCHI
  • Patent number: 10727773
    Abstract: A field winding type rotating electric machine includes: a stator armature winding wound on a stator core; a rotor field winding wound on a rotor core; a rectifying element connected to both ends of the rotor field winding; a capacitor having one end connected to one end of the rectifying element and the other end connected between the two ends of the rotor field winding; and a control circuit configured to supply electric current, which includes a fundamental component for generating rotational torque and a harmonic component having a shorter period than the fundamental component and superimposed on the fundamental component, to the stator armature winding and thereby induce excitation current in the rotor field winding. Moreover, an inductance of the rotor field winding and a capacitance of the capacitor are in a resonant relationship with a frequency of the harmonic component.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: July 28, 2020
    Assignee: DENSO CORPORATION
    Inventors: Masahiro Seguchi, Junichi Nakazono
  • Publication number: 20190312539
    Abstract: A field winding type rotating electric machine includes: a stator armature winding wound on a stator core; a rotor field winding wound on a rotor core; a rectifying element connected to both ends of the rotor field winding; a capacitor having one end connected to one end of the rectifying element and the other end connected between the two ends of the rotor field winding; and a control circuit configured to supply electric current, which includes a fundamental component for generating rotational torque and a harmonic component having a shorter period than the fundamental component and superimposed on the fundamental component, to the stator armature winding and thereby induce excitation current in the rotor field winding. Moreover, an inductance of the rotor field winding and a capacitance of the capacitor are in a resonant relationship with a frequency of the harmonic component.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 10, 2019
    Applicant: DENSO CORPORATION
    Inventors: Masahiro SEGUCHI, Junichi NAKAZONO
  • Publication number: 20190296672
    Abstract: A field winding type rotating electric machine, whose power factor is cos ?, includes a stator, a rotor with a field winding, a rectifying element, a drive unit and a control unit. When performing rectangular-wave or overmodulation energization, the control unit generates a voltage pulse pair, which induces a current pulse pair, by: setting a reference time to the center of an ON duration or OFF duration of a control signal of a first phase; and providing a temporary ON duration and a temporary OFF duration after a predetermined angle from the reference time. The predetermined angle is within a predetermined range including cos?1 ? in electrical angle. The temporary ON duration is provided to temporarily turn ON a control signal of a second phase during an OFF duration thereof. The temporary OFF duration is provided to temporarily turn OFF a control signal of a third phase during an ON duration thereof.
    Type: Application
    Filed: June 13, 2019
    Publication date: September 26, 2019
    Applicant: DENSO CORPORATION
    Inventors: Masahiro SEGUCHI, Junichi NAKAZONO
  • Publication number: 20190207491
    Abstract: A field winding type rotary machine includes a stator having a stator core and a stator coil wound on the stator core, a rotor having a rotor core and a rotor field coil wound on the rotor core, and a rectifier element connected between both ends of the rotor field coil. The field winding type rotary machine includes a capacitor having a first terminal connected to an anode terminal of the rectifier element and a second terminal connected to any point of the rotor field coil.
    Type: Application
    Filed: March 8, 2019
    Publication date: July 4, 2019
    Applicant: DENSO CORPORATION
    Inventor: Masahiro SEGUCHI
  • Patent number: 10333371
    Abstract: A stator includes a stator core, a winding, and a temperature sensor. In the stator core, a plurality of slots are formed in a circumferential direction of the stator. The winding is formed by a plurality of conductors which are housed in the slots and are electrically connected. The slots are formed such that a predetermined number of the conductors are housed and arrayed in a radial direction of the stator. The temperature sensor is located in at least one of the slots and detects temperature of the conductors.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: June 25, 2019
    Assignee: DENSO CORPORATION
    Inventors: Yuki Takahashi, Hideaki Suzuki, Masahiro Seguchi
  • Patent number: 10250175
    Abstract: A field winding synchronous machine drive system includes a field winding synchronous machine having a stator and a rotor and a drive apparatus configured to drive the field winding synchronous machine. The stator has N m-phase stator coils wound on a stator core to create a rotating magnetic field, where N is an integer not less than 2 and m is an integer not less than 3. The rotor has at least one main field winding wound on a rotor core to create field magnetic flux. The drive apparatus includes N inverters each of which supplies m-phase alternating current to a corresponding one of the N m-phase stator coils. Specifically, each of the inverters supplies the corresponding m-phase stator coil with the m-phase alternating current which includes a fundamental-wave current and a time-harmonic current superimposed on the fundamental-wave current; the time-harmonic current has a shorter period than the fundamental-wave current.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: April 2, 2019
    Assignee: DENSO CORPORATION
    Inventor: Masahiro Seguchi
  • Patent number: 9876455
    Abstract: A field winding type synchronous machine has a stator having a stator core to which a stator coil is wound, and a rotor that rotates while facing a peripheral surface of the stator with an electromagnetic gap therebetween. The rotor includes a rotor core having a plurality of main pole portions and interpole portions, main pole windings wound around the main pole portions, interpole windings wound around the interpole portions, and a full-wave rectifier circuit for energizing the field current to the main pole windings. The interpole windings produce the induced current by a magnetic flux generated by a time harmonic current superimposed on a fundamental wave of the stator coil. The electromagnetic gaps between the interpole portions and a circumferential surface of the stator are configured larger than electromagnetic between the main pole portions and the circumferential surface of the stator.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: January 23, 2018
    Assignee: DENSO CORPORATION
    Inventor: Masahiro Seguchi
  • Patent number: 9847684
    Abstract: A stator includes a hollow cylindrical stator core and a stator coil. The stator core has a plurality of slots formed therein. The stator coil is provided in the slots of the stator core in a plurality of layers in a radial direction of the stator core, and includes a first winding and a second winding. The first winding extends around the stator core so as to be located at the (2n?1)th and 2nth layers of the stator coil, and has an end located at the 2nth layer, where n is a natural number. The second winding extends around the stator core so as to be located at the (2n+1)th and (2n+2)th layers of the stator coil, and has an end located at the (2n+1)th layer. The ends of the first and second windings, which are respectively located at the 2nth and (2n+1)th layers, are electrically connected to each other.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: December 19, 2017
    Assignee: DENSO CORPORATION
    Inventors: Hideaki Suzuki, Masahiro Seguchi, Yuki Takahashi
  • Patent number: 9831731
    Abstract: In a stator having a stator core and phase windings, slots are formed in the stator core and each slot accommodates conductors in a layer structure from one end to the other end of the slot in a radial direction of the stator core. The phase windings in one phase have conductors accommodated in a first slot and a second slot which are adjacently formed in the stator core. An electrical connection between the conductors in a n-th layer and the conductors in a (n+1)-th layer includes that the conductors accommodated in the first slot are electrically connected together, the conductors accommodated in the second slot are electrically connected together, and the conductors accommodated in the first slot are electrically connected with the conductors accommodated in the second slot. This connection eliminates a phase difference in the first slot and the second slot in a distributed winding structure.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: November 28, 2017
    Assignee: DENSO CORPORATION
    Inventors: Hideaki Suzuki, Masahiro Seguchi, Yuki Takahashi, Shinsuke Sugiura
  • Publication number: 20170179864
    Abstract: A field winding synchronous machine drive system includes a field winding synchronous machine having a stator and a rotor and a drive apparatus configured to drive the field winding synchronous machine. The stator has N m-phase stator coils wound on a stator core to create a rotating magnetic field, where N is an integer not less than 2 and m is an integer not less than 3. The rotor has at least one main field winding wound on a rotor core to create field magnetic flux. The drive apparatus includes N inverters each of which supplies m-phase alternating current to a corresponding one of the N m-phase stator coils. Specifically, each of the inverters supplies the corresponding m-phase stator coil with the m-phase alternating current which includes a fundamental-wave current and a time-harmonic current superimposed on the fundamental-wave current; the time-harmonic current has a shorter period than the fundamental-wave current.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 22, 2017
    Applicant: DENSO CORPORATION
    Inventor: Masahiro SEGUCHI
  • Patent number: 9673674
    Abstract: In a stator having a stator core and three phase windings, slots are formed in the stator core. The phase winding are accommodated in layers, from one side to the other side in the corresponding slot along a radial direction of the stator core. The phase windings are arranged in a star-delta composite connection structure. The phase winding in each phase is comprised of conductors accommodated in a first slot and a second slot adjacently arranged in the stator core so that the conductor in the n-th layer is electrically connected to the conductor in the (n+1)-th layer, ascending order, per slot. Because each winding has the same length and no difference in electric potential occurs between the star connection and the delta connection, this structure suppress generation of operation noise and a circulating current through the stator core and prevents loss due to the circulating current.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: June 6, 2017
    Assignee: DENSO CORPORATION
    Inventors: Yuki Takahashi, Masahiro Seguchi, Hideaki Suzuki
  • Patent number: 9647502
    Abstract: A stator includes an annular stator core, a stator coil and a resin adhesive. The stator coil is comprised of a plurality of electric wires. The electric wires are partially received in slots of the stator core so that the stator coil has a pair of coil end parts protruding outside the slots respectively from opposite axial end faces of the stator core. The resin adhesive is filled in the slots of the stator core and/or applied to the coil end parts of the stator coil. Moreover, each of the electric wires includes an electric conductor and an insulating coat that covers an outer surface of the electric conductor. The insulating coat is two-layer structured to include an inner coat and an outer coat. The adhesion strength of the outer coat to the resin adhesive is lower than the adhesion strength of the inner coat to the resin adhesive.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: May 9, 2017
    Assignee: DENSO CORPORATION
    Inventors: Yuki Takahashi, Masahiro Seguchi
  • Publication number: 20160336891
    Abstract: A field winding type synchronous machine has a stator having a stator core to which a stator coil is wound, and a rotor that rotates while facing a peripheral surface of the stator with an electromagnetic gap therebetween. The rotor includes a rotor core having a plurality of main pole portions and interpole portions, main pole windings wound around the main pole portions, interpole windings wound around the interpole portions, and a full-wave rectifier circuit for energizing the field current to the main pole windings. The interpole windings produce the induced current by a magnetic flux generated by a time harmonic current superimposed on a fundamental wave of the stator coil. The electromagnetic gaps between the interpole portions and a circumferential surface of the stator are configured larger than electromagnetic between the main pole portions and the circumferential surface of the stator.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 17, 2016
    Applicant: DENSO CORPORATION
    Inventor: Masahiro SEGUCHI