Patents by Inventor Masahiro Takizawa

Masahiro Takizawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11229971
    Abstract: Provided is a three-dimensional laminating and shaping apparatus 100 including a column unit 200 that is configured to output an electron beam EB and deflect the electron beam EB toward the front surface of a powder layer 32, an insulating portion that electrically insulates a three-dimensional structure 36 from a ground potential member, an ammeter 73 that is configured to measure the current value indicative of the current flowing into the ground after passing through the three-dimensional structure 36, a melting judging unit 410 that is configured to detect that the powder layer 32 is melted based on the current value measured by the ammeter 73 and generate a melting signal, and a deflection controller 420 that is configured to receive the melting signal to determine the condition for the irradiation with the electron beam.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: January 25, 2022
    Assignee: ADVANTEST CORPORATION
    Inventors: Shinji Sugatani, Shigeki Nishina, Jun Matsumoto, Masahiro Takizawa, Minoru Soma, Akio Yamada
  • Patent number: 11216402
    Abstract: The storage comprises a first bridge, a second bridge that can be connected to the first bridge, a first storage device that can be connected to the first bridge, and second and third storage devices that can be connected to the second bridge. If a command that has been received from a main controller is a command not corresponding to the first storage device and an access destination of the main controller is the second bridge, a controller transmits a command corresponding to the received command to the second bridge. In contrast, if the command that has been received from the main controller is a command corresponding to the first storage device, the controller transmits the command corresponding to the received command to the second bridge or the first storage device.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: January 4, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Masahiro Takizawa
  • Publication number: 20210405941
    Abstract: An image forming system includes an image forming apparatus configured to form an image on a sheet, a plurality of accessory apparatuses arranged side by side along a conveyance direction of the sheet, and a base station configured to wirelessly communicate with the image forming apparatus and the plurality of accessory apparatuses. The image forming apparatus includes one or more controllers configured to function as (i) a unit configured to acquire, from the base station, information that the base station acquires by wirelessly communicating with the plurality of accessory apparatuses, and (ii) a unit configured to output screen information for registering information about an arrangement order of the plurality of accessory apparatuses, based on the information acquired from the base station.
    Type: Application
    Filed: June 22, 2021
    Publication date: December 30, 2021
    Inventors: Masahiro Takizawa, Ryohei Yamada
  • Publication number: 20210364586
    Abstract: Imaging failure of a positioning image due to the difference in the position or the size of a subject placed in the examination space is prevented, and accordingly, the extension of the examination time is prevented. A pre-scan for appropriately setting the imaging position for positioning imaging is automatically performed prior to the positioning imaging and the main imaging of an MRI apparatus, and a region where an examination part of a subject is present (the extent of the examination part) is detected using the measurement data. By using the detected extent of the examination part, it is possible to subsequently determine the imaging position or calculate the scan parameters used for imaging.
    Type: Application
    Filed: March 18, 2021
    Publication date: November 25, 2021
    Inventors: Ayaka IKEGAWA, Masahiro TAKIZAWA, Hisako NAGAO, Tomohiro GOTOU
  • Patent number: 11080825
    Abstract: Provided is a novel aliasing elimination technique capable of suppressing noise amplification in an aliasing elimination calculation in parallel imaging and the like. The technique utilizes the fact that a phase of an image (a true image that is one of a plurality of images) to be separated from a main captured image obtained with the plurality of images superimposed is basically the same as a phase of an image obtained at a low resolution, to obtain a phase difference between a phase of a low-resolution image and a phase of the main captured image, and separates the true image by calculation using the phase difference and a pixel value of the main captured image. At this time, the low-resolution image is obtained by each of a plurality of receiving coils, and the true image is calculated after multiplying a plurality of low-resolution images by a complex number that minimizes the noise amplification.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 3, 2021
    Assignee: HITACHI, LTD.
    Inventors: Kousuke Itou, Shinji Kurokawa, Masahiro Takizawa
  • Patent number: 11073587
    Abstract: An image corrected for body motion with high accuracy in a short time when performing retrospective body motion correction on an MRI image is provided, and the time from imaging to image display is reduced. A body motion corrector of an MRI apparatus has a weighting factor calculator that calculates a three-dimensional weighting factor based on signals received by multi-channel receive coils. A processing space converter converts three-dimensional frequency space data of a measurement signal and the three-dimensional weighting factor respectively into hybrid space data and a two-dimensional weighting factor. A synthesized signal calculator calculates a synthesized signal by convolution integration of the hybrid space data and the two-dimensional weighting factor; and a body motion position detector detects a body motion occurrence position in the hybrid space from the hybrid space data and the synthesized signal.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: July 27, 2021
    Assignee: HITACHI, LTD.
    Inventors: Yukari Yamamoto, Toru Shirai, Masahiro Takizawa, Takashi Nishihara
  • Publication number: 20210068700
    Abstract: To calculate a high-resolution coil sensitivity distribution that does not depend on a shape or a structure of a subject with high accuracy. An MRI apparatus of the invention includes: a measurement unit that includes a reception coil including a plurality of channels, a measurement unit that measures a nuclear magnetic resonance signal of a subject for every channel of the reception coil; and an image computation unit that creates an image of the subject by using a sensitivity distribution for every channel of the reception coil, and a channel image obtained from the nuclear magnetic resonance signal measured by the measurement unit for every channel. The image computation unit includes a sensitivity distribution calculation unit that calculates a sensitivity distribution on a k-space for every channel by using the channel images and a composite image obtained by combining the channel images.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 11, 2021
    Inventors: Toru SHIRAI, Yasuhiro KAMADA, Masahiro TAKIZAWA, Hisaaki OCHI
  • Patent number: 10919105
    Abstract: Provided is a three-dimensional laminating and shaping apparatus 100 including a column unit 200 that is configured to output an electron beam EB and deflect the electron beam EB toward the front surface of a powder layer 32, an electron detector 72 that is configured to detect electrons that may be emitted in a predetermined direction from the front surface of the powder layer 32 when the powder layer 32 is irradiated with the electron beam EB, a melting judging unit 410 that is configured to generate a melting signal based on the strength of the detection signal from the electron detector 72, and a deflection controller 420 that is configured to receive the melting signal to determine the condition of the irradiation the electron beam.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: February 16, 2021
    Assignee: ADVANTEST CORPORATION
    Inventors: Shinji Sugatani, Shigeki Nishina, Jun Matsumoto, Masahiro Takizawa, Minoru Soma, Akio Yamada
  • Publication number: 20200288031
    Abstract: An information processing apparatus which is capable of reducing the risk of storage device failure. The information processing apparatus is equipped with a storage device that can be accessed a limited number of times. A control unit performs control to write data into the storage device. The control unit determines whether or not to allow writing into the storage device based on an operating state of the information processing apparatus.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 10, 2020
    Inventor: Masahiro Takizawa
  • Publication number: 20200271744
    Abstract: An object of the present invention is to provide an image corrected for body motion with high accuracy in a short time when performing retrospective body motion correction on an MRI image, and to reduce a time from imaging to image display. A body motion corrector of an MRI apparatus includes: a weighting factor calculator that calculates a three-dimensional weighting factor based on signals received by multi-channel receive coils; a processing space converter that converts three-dimensional frequency space data of a measurement signal and the three-dimensional weighting factor respectively into hybrid space data and a two-dimensional weighting factor; a synthesized signal calculator that calculates a synthesized signal by convolution integration of the hybrid space data and the two-dimensional weighting factor; and a body motion position detector that detects a body motion occurrence position in the hybrid space from the hybrid space data and the synthesized signal.
    Type: Application
    Filed: February 24, 2020
    Publication date: August 27, 2020
    Inventors: Yukari YAMAMOTO, Toru SHIRAI, Masahiro TAKIZAWA, Takashi NISHIHARA
  • Publication number: 20200258199
    Abstract: In an image acquired by a plurality of receiver coils with the use of MRI, separated images are obtained by separating spatially overlapping signals according to PI method, and noise in the separated images is eliminated with a high degree of precision. A complex image spatially overlapping is measured from nuclear magnetic resonance signals received by a plurality of receiver coils, and spatially overlapping signals are separated and a plurality of separated images are calculated, by using sensitivity information of the plurality of receiver coils. Then, noise is eliminated based on a correlation of noise mixed between the separated images.
    Type: Application
    Filed: July 27, 2018
    Publication date: August 13, 2020
    Inventors: Toru SHIRAI, Ryota SATOH, Yasuhiro KAMADA, Masahiro TAKIZAWA, Yoshihisa SOTOME
  • Publication number: 20200126188
    Abstract: Provided is a novel aliasing elimination technique capable of suppressing noise amplification in an aliasing elimination calculation in parallel imaging and the like. The technique utilizes the fact that a phase of an image (a true image that is one of a plurality of images) to be separated from a main captured image obtained with the plurality of images superimposed is basically the same as a phase of an image obtained at a low resolution, to obtain a phase difference between a phase of a low-resolution image and a phase of the main captured image, and separates the true image by calculation using the phase difference and a pixel value of the main captured image. At this time, the low-resolution image is obtained by each of a plurality of receiving coils, and the true image is calculated after multiplying a plurality of low-resolution images by a complex number that minimizes the noise amplification.
    Type: Application
    Filed: July 5, 2018
    Publication date: April 23, 2020
    Applicant: Hitachi, Ltd.
    Inventors: Kousuke ITOU, Shinji KUROKAWA, Masahiro TAKIZAWA
  • Patent number: 10573491
    Abstract: To realize a multi-beam formation device that can stably machine a fine pattern using complementary lithography, provided is a device that deforms and deflects a beam, including an aperture layer having a first aperture that deforms and passes a beam incident thereto from a first surface side of the device and a deflection layer that passes and deflects the beam that has been passed by the aperture layer. The deflection layer includes a first electrode section having a first electrode facing a beam passing space in the deflection layer corresponding to the first aperture and a second electrode section having an extending portion that extends toward the beam passing space and is independent from an adjacent layer in the deflection layer and a second electrode facing the first electrode in a manner to sandwich the beam passing space between the first electrode and an end portion of the second electrode.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: February 25, 2020
    Assignee: ADVANTEST CORPORATION
    Inventors: Akio Yamada, Shinji Sugatani, Masaki Kurokawa, Masahiro Takizawa, Ryuma Iwashita
  • Publication number: 20190354501
    Abstract: The storage comprises a first bridge, a second bridge that can be connected to the first bridge, a first storage device that can be connected to the first bridge, and second and third storage devices that can be connected to the second bridge. If a command that has been received from a main controller is a command not corresponding to the first storage device and an access destination of the main controller is the second bridge, a controller transmits a command corresponding to the received command to the second bridge. In contrast, if the command that has been received from the main controller is a command corresponding to the first storage device, the controller transmits the command corresponding to the received command to the second bridge or the first storage device.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 21, 2019
    Inventor: Masahiro Takizawa
  • Publication number: 20190337085
    Abstract: To provide a three-dimensional printing device that irradiates approximately the same ranges on the surface of a powder layer simultaneously with a plurality of electron beams having different beam shapes. An electron beam column 200 of the three-dimensional printing device 100 includes a plurality of electron sources 20 including electron sources having anisotropically-shaped beam generating units, and beam shape deforming elements 30 that deform the beam shapes of electron beams output from the electron sources 20 on a surface 63 of a powder layer 62. A deflector 50 included in the electron beam column 200 deflects an electron beam output from each of the plurality of electron sources 20 by a distance larger than the beam space between electron beams before passing through the deflector 50.
    Type: Application
    Filed: January 12, 2017
    Publication date: November 7, 2019
    Inventors: Shinichi HAMAGUCHI, Shinji SUGATANI, Masayuki TAKAHASHI, Masahiro TAKIZAWA
  • Patent number: 10429461
    Abstract: A magnetic resonance imaging device produces a magnetic field gradient with parallel driving of positive-side subcoils and negative-side subcoils with different power sources in the magnetic field gradient direction, to detect a misalignment in drive timing of the positive side and the negative side. Pulse sequences for timing misalignment detection having a slice magnetic field gradient pulse and a read-out magnetic field gradient pulse in the same direction as a magnetic field gradient of interest are executed. A positive-side slice echo and a negative-side slice echo of the magnetic field gradient are acquired. A phase difference between a positive-side projection image and a negative-side projection image is derived by computation with phase error from other factors being removed. From the slope of the phase difference with respect to a location, the drive timing misalignment between the positive-side subcoil and the negative-side subcoil of the magnetic field gradient production is detected.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: October 1, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Yo Taniguchi, Masahiro Takizawa, Takeshi Yatsuo, Atsushi Kuratani
  • Patent number: 10330752
    Abstract: In order to improve B1 non-homogeneity while reducing a local SAR in an object, particularly, in a human tissue during MR imaging, the present invention is characterized in that each of a plurality of irradiation channels is controlled on the basis of RF shimming parameters corresponding to the plurality of irradiation channels, and, in a case of performing imaging sequence of irradiating an object with an RF magnetic field, there is the use of the RF shimming parameters obtained by imposing a constraint condition on at least one of a plurality of principal components obtained through principal component analysis on the RF shimming parameters.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: June 25, 2019
    Assignee: HITACHI, LTD.
    Inventors: Kosuke Ito, Yoshihisa Soutome, Masahiro Takizawa
  • Publication number: 20190118286
    Abstract: Provided is a three-dimensional laminating and shaping apparatus 100 including a column unit 200 that is configured to output an electron beam EB and deflect the electron beam EB toward the front surface of a powder layer 32, an electron detector 72 that is configured to detect electrons that may be emitted in a predetermined direction from the front surface of the powder layer 32 when the powder layer 32 is irradiated with the electron beam EB, a melting judging unit 410 that is configured to generate a melting signal based on the strength of the detection signal from the electron detector 72, and a deflection controller 420 that is configured to receive the melting signal to determine the condition of the irradiation the electron beam.
    Type: Application
    Filed: September 4, 2018
    Publication date: April 25, 2019
    Inventors: Shinji SUGATANI, Shigeki NISHINA, Jun MATSUMOTO, Masahiro TAKIZAWA, Minoru SOMA, Akio YAMADA
  • Publication number: 20190118287
    Abstract: Provided is a three-dimensional laminating and shaping apparatus 100 including a column unit 200 that is configured to output an electron beam EB and deflect the electron beam EB toward the front surface of a powder layer 32, an insulating portion that electrically insulates a three-dimensional structure 36 from a ground potential member, an ammeter 73 that is configured to measure the current value indicative of the current flowing into the ground after passing through the three-dimensional structure 36, a melting judging unit 410 that is configured to detect that the powder layer 32 is melted based on the current value measured by the ammeter 73 and generate a melting signal, and a deflection controller 420 that is configured to receive the melting signal to determine the condition for the irradiation with the electron beam.
    Type: Application
    Filed: September 11, 2018
    Publication date: April 25, 2019
    Inventors: Shinji SUGATANI, Shigeki NISHINA, Jun MATSUMOTO, Masahiro TAKIZAWA, Minoru SOMA, Akio YAMADA
  • Patent number: 10261150
    Abstract: A magnetic resonance imaging apparatus that can display an image showing conditions of tissues such as water and fat more accurately is provided. For this purpose, the signal processing unit 110 processes signals of each pixel of the first image 506 generated based on an NMR signal for each pixel of the first image 506 in order to generate the second image 509 and determines an order of processing unprocessed pixels of the first image 506 by preferentially selecting the unprocessed pixels with a high signal strength from among a plurality of unprocessed pixels for which no process has not been performed yet that are adjacent to the already-processed pixels of the first image 506.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: April 16, 2019
    Assignee: HITACHI, LTD.
    Inventors: Norimasa Nakai, Masahiro Takizawa