Patents by Inventor Masahiro TOMONO
Masahiro TOMONO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12265396Abstract: Provided are an information processing device and a mobile robot capable of ensuring the accuracy of estimation of a self-position even with an environmental change and maintaining the consistency of the self-position on a map. The information processing device of the mobile robot includes a control section and a detection section configured to detect a distance to a peripheral object and the direction thereof as detection information. The control section includes a storage, a map producer configured to produce a peripheral map, an existing map self-position estimator configured to estimate a current self-position based on an existing map, a current map self-position estimator configured to estimate the current self-position based on a current map, a reliability evaluator configured to evaluate the reliability of each of the estimated self-positions, and a self-position updater configured to update either one of the self-positions based on the reliability.Type: GrantFiled: March 13, 2019Date of Patent: April 1, 2025Assignee: CHIBA INSTITUTE OF TECHNOLOGYInventor: Masahiro Tomono
-
Publication number: 20250093831Abstract: A controller comprises: an input unit that receives an input of an experimental protocol designed in a directed graph; a generation unit that generates a dependency list including first dependency information indicating that start of processing of a second node depends on completion of processing of a first node; a selection unit that selects from a plurality of nodes a node at which processing is started based on the dependency list; a command unit that instructs an experimental device to execute the processing of the selected node; and an updating unit that updates the dependency list when any processing of the plurality of nodes is completed, the updating unit updating the first dependency information from first information to second information, the selection unit selecting the second node when the first dependency information is updated from the first information to the second information.Type: ApplicationFiled: September 6, 2022Publication date: March 20, 2025Inventors: Seiya KURATA, Masahiro IKEGAMI, Taichi TOMONO
-
Publication number: 20250026860Abstract: Provided is a more effective anti-inflammatory agent having less side effects as compared to NSAIDs and steroidal anti-inflammatory agents. A therapeutic agent for inflammatory diseases containing as an active ingredient an anti-4-HNE antibody, which inhibits 4-HNE, has been found to have ameliorating effects on the expressions of various inflammation markers involved in cerebral infarction and cerebral ischemia-reperfusion, and has also been found to have life-prolonging and life-saving effects in sepsis model animals. The anti-4-HNE antibody shows remarkable efficacy even on inflammatory diseases on which existing anti-inflammatory drugs, such as NSAIDs and steroidal anti-inflammatory agents, have hitherto not shown effects.Type: ApplicationFiled: August 30, 2024Publication date: January 23, 2025Applicants: NATIONAL UNIVERSITY CORPORATION OKAYAMA UNIVERSITY, SOWAKAI SOCIAL MEDICAL CORPORATIONInventors: Masahiro NISHIBORI, Shuji MORI, Yuta MORIOKA, Hidenori WAKE, Yasuko TOMONO
-
Patent number: 12169411Abstract: An information processing device includes a detection section configured to acquire the presence or absence of an object at the periphery of a mobile robot as the detection information, a control section configured to control the detection section, and a map construction section configured to construct an occupied map. The map construction section includes a storage configured to store the detection information in chronological order, a map producer configured to produce a map based on the detection information, a normal line acquirer configured to acquire a normal line to each determination point based on the presence or absence of the object at the periphery of each determination point on the temporal map produced by the map producer, and a validity determinator configured to determine the validity of the detection information on each determination point based on an angle between each beam and the normal line at each determination point.Type: GrantFiled: March 13, 2019Date of Patent: December 17, 2024Assignee: CHIBA INSTITUTE OF TECHNOLOGYInventors: Yoshitaka Hara, Masahiro Tomono
-
Patent number: 12146747Abstract: A self-localization device that can reduce the processing time even when estimating the self-location in an environment where the number of pieces of three-dimensional point group data is large wherein the self-localization device includes an estimation unit that includes: a map generation unit that generates a map of surroundings of the mobile robot based on three-dimensional point group data detected by a detection unit; a geometric feature extraction unit that extracts geometric features from a current map and extracts geometric features from a past map; a self-location calculation unit that selects the geometric features extracted by the geometric feature extraction unit as sets of geometric features and calculates self-locations in the past map; and a self-location evaluation unit that evaluates a degree of coincidence between the current map and the past map for each set of geometric features.Type: GrantFiled: March 13, 2020Date of Patent: November 19, 2024Assignee: CHIBA INSTITUTE OF TECHNOLOGYInventor: Masahiro Tomono
-
Patent number: 11802779Abstract: Provided are a map generation system and a mobile object configured so that the map accuracy of an occupancy grid map can be ensured while a memory capacity and an arithmetic processing load can be reduced. The map generation system includes a storage (27) configured to store, as detection information, a detection value obtained for each detection unit by a detection device (4) in chronological order, a map producer (23) configured to produce the occupancy grid map based on the detection information stored in the storage (27) and cause the storage (27) to store the occupancy grid map, and an influence ratio calculator (24) configured to calculate an influence ratio for the occupancy grid map for each piece of detection information stored in the storage (27). The map producer (23) sorts the detection information based on the influence ratio calculated by the influence ratio calculator (24) to produce the occupancy grid map.Type: GrantFiled: July 30, 2018Date of Patent: October 31, 2023Assignee: CHIBA INSTITUTE OF TECHNOLOGYInventor: Masahiro Tomono
-
Publication number: 20230110609Abstract: A self-localization device that can reduce the processing time even when estimating the self-location in an environment where the number of pieces of three-dimensional point group data is large wherein the self-localization device includes an estimation unit that includes: a map generation unit that generates a map of surroundings of the mobile robot based on three-dimensional point group data detected by a detection unit; a geometric feature extraction unit that extracts geometric features from a current map and extracts geometric features from a past map; a self-location calculation unit that selects the geometric features extracted by the geometric feature extraction unit as sets of geometric features and calculates self-locations in the past map; and a self-location evaluation unit that evaluates a degree of coincidence between the current map and the past map for each set of geometric features.Type: ApplicationFiled: March 13, 2020Publication date: April 13, 2023Inventor: Masahiro TOMONO
-
Patent number: 11409306Abstract: Provided is a movement robot configured so that various types of operation can be executed according to motion of other objects or a movement body and a utilization area can be expanded accordingly. The movement robot includes a robot body 1, a control unit 2, a traveling unit 3, and a detection unit 4.Type: GrantFiled: August 14, 2018Date of Patent: August 9, 2022Assignee: CHIBA INSTITUTE OF TECHNOLOGYInventors: Masahiro Tomono, Kiyoshi Irie, Hideaki Yamato, Masaharu Shimizu, Shunji Yamanaka, Takayuki Furuta
-
Publication number: 20220137638Abstract: Provided are an information processing device and a mobile robot capable of ensuring the accuracy of estimation of a self-position even with an environmental change and maintaining the consistency of the self-position on a map. The information processing device of the mobile robot includes a control section and a detection section configured to detect a distance to a peripheral object and the direction thereof as detection information. The control section includes a storage, a map producer configured to produce a peripheral map, an existing map self-position estimator configured to estimate a current self-position based on an existing map, a current map self-position estimator configured to estimate the current self-position based on a current map, a reliability evaluator configured to evaluate the reliability of each of the estimated self-positions, and a self-position updater configured to update either one of the self-positions based on the reliability.Type: ApplicationFiled: March 13, 2019Publication date: May 5, 2022Inventor: Masahiro TOMONO
-
Publication number: 20220100201Abstract: An information processing device includes a detection section configured to acquire the presence or absence of an object at the periphery of a mobile robot as the detection information, a control section configured to control the detection section, and a map construction section configured to construct an occupied map. The map construction section includes a storage configured to store the detection information in chronological order, a map producer configured to produce a map based on the detection information, a normal line acquirer configured to acquire a normal line to each determination point based on the presence or absence of the object at the periphery of each determination point on the temporal map produced by the map producer, and a validity determinator configured to determine the validity of the detection information on each determination point based on an angle between each beam and the normal line at each determination point.Type: ApplicationFiled: March 13, 2019Publication date: March 31, 2022Inventors: Yoshitaka HARA, Masahiro TOMONO
-
Publication number: 20210365040Abstract: Provided is a movement robot configured so that various types of operation can be executed according to motion of other objects or a movement body and a utilization area can be expanded accordingly. The movement robot includes a robot body 1, a control unit 2, a traveling unit 3, and a detection unit 4.Type: ApplicationFiled: August 14, 2018Publication date: November 25, 2021Inventors: Masahiro TOMONO, Kiyoshi IRIE, Hideaki YAMATO, Masaharu SHIMIZU, Shunji YAMANAKA, Takayuki FURUTA
-
Publication number: 20210270633Abstract: Provided are a map generation system and a mobile object configured so that the map accuracy of an occupancy grid map can be ensured while a memory capacity and an arithmetic processing load can be reduced. The map generation system includes a storage (27) configured to store, as detection information, a detection value obtained for each detection unit by a detection device (4) in chronological order, a map producer (23) configured to produce the occupancy grid map based on the detection information stored in the storage (27) and cause the storage (27) to store the occupancy grid map, and an influence ratio calculator (24) configured to calculate an influence ratio for the occupancy grid map for each piece of detection information stored in the storage (27). The map producer (23) sorts the detection information based on the influence ratio calculated by the influence ratio calculator (24) to produce the occupancy grid map.Type: ApplicationFiled: July 30, 2018Publication date: September 2, 2021Inventor: Masahiro TOMONO
-
Publication number: 20210137342Abstract: Provided is a self-propelled vacuum configured so that obstacle avoidance operation can be efficiently performed and cleaning time can be shortened. A self-propelled vacuum 1 includes a laser range finder (LRF) 20 configured to sense the periphery of a vacuum body 2, and an up-down drive unit 22 configured to move the LRF 20 up and down between a protrusion position above the vacuum body 2 and a housing position in the vacuum body 2. The up-down drive unit 22 is driven to move the LRF 20 up and down.Type: ApplicationFiled: June 7, 2017Publication date: May 13, 2021Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200405115Abstract: An autonomous vacuum cleaner is provided which can promote reductions in size and load by simplifying the structure of a surrounding cleaning means. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) having a wheel (121) for travelling autonomously, and a pivoting cleaner (3) that can vacuum and clean around the vacuum cleaner body (2). The pivoting cleaner (3) is configured including: an arm (21) that can pivot outward from the vacuum cleaner body (2); a vacuum inlet (74) that is provided to the arm (21) to suck up dirt and the like on the floor surface; a rotation support (61, 144) configured to rotatably support the arm (21) on the vacuum cleaner body (2); and a vacuum channel (66) that is provided along a rotation axis of the rotation support (61, 144) to cause the inside of the arm (21) and a sub-duct (143) to communicate with each other.Type: ApplicationFiled: September 4, 2017Publication date: December 31, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200405110Abstract: An autonomous vacuum cleaner is provided which can clean efficiently around a vacuum cleaner body. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) having a wheel (121) for travelling autonomously, a surroundings sensor (32) for detecting an obstacle around the vacuum cleaner body (2), a pivoting cleaner (3) that can clean around the vacuum cleaner body (2), and a controller (5) that controls the surroundings sensor (32) and the pivoting cleaner (3). The pivoting cleaner (3) includes an arm (21) that protrudes outward from the vacuum cleaner body (2), a motor (22) that drives the arm (21), and a load sensor (23) that detects a load acting on the arm (21) from the outside. The motor (22) is controlled and driven on the basis of the presence or absence of an obstacle detected by the surroundings sensor (32), and travel of the vacuum cleaner body (2) is controlled on the basis of a load detected by the load sensor (23).Type: ApplicationFiled: September 4, 2017Publication date: December 31, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200345191Abstract: An autonomous vacuum cleaner is provided which allows a user to check the operating state of a vacuum cleaner body and a map to be created, and can increase cleaning efficiency. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) and a mobile terminal (6). Whenever the vacuum cleaner body 2 acquires surrounding information and location information while travelling autonomously, a map creator (471) creates a map of a cleaning target space including the vacuum cleaner body (2) in real time, and a map display (61) of the mobile terminal (6) displays the map.Type: ApplicationFiled: November 16, 2017Publication date: November 5, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200275815Abstract: An autonomous vacuum cleaner that can reduce the footprint in a standby state is provided. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) and a charging station (6). The charging station (6) has a hook (64) that latches a latched member (16) provided to a rear side of the vacuum cleaner body (2), and a lift driver (61) that raises and lowers the hook (64), and is configured to be capable of storing the vacuum cleaner body (2) in a standing state where the vacuum cleaner body (2) is hoisted and the rear side is oriented upward.Type: ApplicationFiled: September 13, 2017Publication date: September 3, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200245837Abstract: An autonomous vacuum cleaner is provided which can accurately acquire surrounding information related to target objects in the surroundings. An autonomous vacuum cleaner (1) includes: a vacuum cleaner body (2); a front sensor (31) configured to detect a target object at a far distance from the vacuum cleaner body (2); and a contact sensor (32) configured to detect a target object at a near distance from the vacuum cleaner body (2). A controller (5) is configured including a surrounding information generator (45) configured to generate surrounding information related to target objects around the vacuum cleaner body (2), on the basis of far information detected by the front sensor (31) and near information detected by the contact sensor (32).Type: ApplicationFiled: October 13, 2017Publication date: August 6, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
-
Publication number: 20200089249Abstract: Provided is a self-propelled vacuum configured so that depending on an obstacle, the self-propelled vacuum can move over the obstacle without performing avoidance operation to shorten cleaning time. A self-propelled vacuum 1 includes a vacuum body 2, a suction unit 5 for sucking dust and the like on a floor surface F, a traveling drive unit 4 configured to drive wheels 21, a front sensor 51 configured to sense an obstacle S in the front in a traveling direction, and a vehicle height adjustment unit 6 configured to move the wheels 21 up and down to adjust the vehicle height of the vacuum body 2. In a case where the traveling drive unit 4 is driven and the front sensor 51 senses the obstacle S during self-propelling, the vehicle height adjustment unit 6 increases the vehicle height to a predetermined height, and thereafter, the self-propelled vacuum 1 moves over the obstacle S while the vehicle height is being adjusted such that a distance to the obstacle S is held within a predetermined range.Type: ApplicationFiled: June 7, 2017Publication date: March 19, 2020Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA