Patents by Inventor Masahiro Toyohara

Masahiro Toyohara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190017461
    Abstract: Provided is a control apparatus for an internal combustion engine which can achieve required torque and avoid the risk of an accidental fire even in the case where an error occurs in final injection termination timing. A microcomputer calculates T902 which has been further advanced from T106 which precedes ignition timing by time required for vaporization of fuel injected into a cylinder of an internal combustion engine. The microcomputer determines whether final injection termination timing (T903) comes after T106 or T902. When it has been determined that final injection termination timing (T1204) comes after T106 or T902, the microcomputer controls an injector or an ignition device so as to secure time for vaporization of the fuel injected into the cylinder of the internal combustion engine while satisfying a fuel injection amount required in one combustion cycle.
    Type: Application
    Filed: January 19, 2017
    Publication date: January 17, 2019
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Osamu MUKAIHARA, Masahiro TOYOHARA, Shigeyuki YUFU
  • Publication number: 20180209366
    Abstract: A drive device capable of detecting individual variations of an injection quantity of a fuel injection device of each cylinder and adjusting a current waveform provided to an injection pulse width and a solenoid such that the individual variations of the fuel injection devices are reduced. The fuel injection device in the present invention includes a valve body that close a fuel passage by coming into contact with a valve seat and opens the fuel passage by separating from the valve seat and a magnetic circuit constructed of a solenoid, a fixed core, a nozzle holder a housing and a needle and when a current is supplied to the solenoid a magnetic suction force acts on the needle and the needle has a function to open the valve body by colliding against the valve body after performing a free running operation and changes of acceleration of the needle due to collision of the needle against the valve body are detected by a current flowing through the solenoid.
    Type: Application
    Filed: February 8, 2018
    Publication date: July 26, 2018
    Inventors: Ryo KUSAKABE, Motoyuki ABE, Ayumu HATANAKA, Toshihiro AONO, Teppei HIROTSU, Hideyuki SAKAMOTO, Masahiro TOYOHARA, Osamu MUKAIHARA, Takao FUKUDA, Yoshihito YASUKAWA, Akiyasu MIYAMOTO
  • Publication number: 20180209365
    Abstract: A set spring force is estimated with high precision and a drive waveform is corrected according to the results. A control device of a fuel injection device consists of an incorporation means of reading a drive voltage of a solenoid, an inflexion point extraction filter for filtering the drive voltage to highlight inflexion points, a means of selecting a later inflexion point or a means of calculating a temporal difference between a later inflexion point and an earlier inflexion point of the extracted inflexion points, and a drive current correction means of correcting a drive current parameter on the basis of timing of the selected, later inflexion point or a temporal difference between the inflexion points.
    Type: Application
    Filed: July 20, 2016
    Publication date: July 26, 2018
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Toshihiro AONO, Masahiro TOYOHARA, Osamu MUKAIHARA
  • Publication number: 20180195450
    Abstract: Since a factor affecting an individual difference learning result is reduced or eliminated regardless of a valve body behavior, it is possible to highly accurately detect an individual difference of a fuel injector caused by the valve body behavior and to reliably detect the individual difference even when the fuel injector is replaced. When a valve opening/closing timing of the fuel injector is learned by a learning unit, a unit of interrupting the learning if a predetermined condition is established, a unit of prohibiting the learning of the valve closing timing using the learning unit if a predetermined condition is established, or a unit of prohibiting the learning of the valve opening/closing timing of the fuel injector using the learning unit if a fuel pressure of a common rail supplying a fuel to the plurality of fuel injectors changes by a predetermined value or more within a predetermined time is provided.
    Type: Application
    Filed: June 29, 2016
    Publication date: July 12, 2018
    Inventors: Osamu MUKAIHARA, Masahiro TOYOHARA
  • Publication number: 20180156147
    Abstract: Provided is a fuel injection control device capable of accurately detecting a valve opening delay time of a fuel injection valve, and implementing high-precision minute injection control. A valve opening delay time of a fuel injection valve is estimated on the basis of a plurality of valve closing delay times obtained when the fuel injection valve is operated with injection pulse widths that are different injection pulse widths from each other and with which the fuel injection valve is in an intermediate lift state.
    Type: Application
    Filed: June 1, 2016
    Publication date: June 7, 2018
    Inventors: Haoyun SHI, Yuuki OKUDA, Masahiro TOYOHARA
  • Patent number: 9926874
    Abstract: A drive device capable of detecting individual variations of an injection quantity of a fuel injection device of each cylinder and adjusting a current waveform provided to an injection pulse width and a solenoid such that the individual variations of the fuel injection devices are reduced. The fuel injection device in the present invention includes a valve body that closes a fuel passage by coming into contact with a valve seat and opens the fuel passage by separating from the valve seat and a magnetic circuit constructed of a solenoid, a fixed core, a nozzle holder, a housing, and a needle and when a current is supplied to the solenoid, a magnetic suction force acts on the needle and the needle has a function to open the valve body by colliding against the valve body after performing a free running operation and changes of acceleration of the needle due to collision of the needle against the valve body are detected by a current flowing through the solenoid.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: March 27, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Ryo Kusakabe, Motoyuki Abe, Ayumu Hatanaka, Toshihiro Aono, Teppei Hirotsu, Hideyuki Sakamoto, Masahiro Toyohara, Osamu Mukaihara, Takao Fukuda, Yoshihito Yasukawa, Akiyasu Miyamoto
  • Patent number: 9903305
    Abstract: A control device for an internal combustion engine is provided which can stabilize behavior when a fuel injection valve is opened, and reduce a variation in the amount of fuel injection of the fuel injection valve.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 27, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Osamu Mukaihara, Masahiro Toyohara
  • Publication number: 20180010545
    Abstract: The present invention determines whether multi-stage injection control is operating normally or abnormally, and carries out a failsafe of multi-stage injection control as necessary. The present invention, which solves the problem described above, has means such as the following.
    Type: Application
    Filed: January 29, 2016
    Publication date: January 11, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Osamu MUKAIHARA, Masahiro TOYOHARA
  • Publication number: 20170335787
    Abstract: The purpose of the present invention is to provide a fuel injection valve control device with which. variability in the injection amount with respect to drive pulse width can be kept to a satisfactory level in each of a plurality of fuel injection devices. The present invention provides a fuel injection valve control device for controlling a plurality of fuel injection devices each equipped with a valve body and a solenoid for opening the valve body, characterized in that the device is configured such that, a prescribed time after voltage has been applied to the solenoid, a holding current is applied, the prescribed time and the holding current being corrected for each of the fuel injection devices, on the basis of the operating characteristics of the fuel injection device.
    Type: Application
    Filed: December 7, 2015
    Publication date: November 23, 2017
    Inventors: Toshihiro AONO, Motoyuki ABE, Masahiro TOYOHARA, Osamu MUKAIHARA
  • Patent number: 9783138
    Abstract: In a vehicle control device in which a driver circuit which does not have a computing function and a computing device communicate with each other, there is provided a technology which can efficiently diagnose that both the driver circuit and the computing device normally communicate with each other by a simple technique. The vehicle control device according to the present invention transmits diagnosis data as a control command from a computing portion to the driver circuit, and the driver circuit sends inverted diagnosis data in which the diagnosis data is bit-inverted back to the computing portion. The computing portion diagnoses whether or not the communication between the computing portion and the driver circuit is normally performed, by using the diagnosis data and the inverted diagnosis data.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: October 10, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Shinichiro Yoneoka, Yasuhiko Okada, Chihiro Sato, Koji Yuasa, Masahiro Toyohara, Yasushi Sugiyama
  • Publication number: 20170234260
    Abstract: In control device of an internal combustion engine, for each first period, a calculation unit calculates number of fuel injections within one combustion cycle and fuel injection rate. For first period, a first storage unit stores number of fuel injections and fuel injection rate of calculation unit. For each second period, a reference unit refers to the number of fuel injections and fuel injection rate stored by the first storage unit. A second storage unit stores for an interval, from the start time of the first fuel injection until start of the last fuel injection of at least one combustion cycle, the number of fuel injections and fuel injection rate referred to by reference unit. A control unit controls a fuel injection valve so that fuel is injected in accordance with the number of fuel injections fuel injection rate stored by second storage unit.
    Type: Application
    Filed: August 5, 2015
    Publication date: August 17, 2017
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Satoshi MATSUDA, Masahiro TOYOHARA, Osamu MUKAIHARA, Makoto IJYUIN
  • Patent number: 9714626
    Abstract: An object of this disclosure is to provide a fuel injection device that can reliably detect an operation timing of a valve body, that is, a valve opening timing with high accuracy. The current of an electromagnetic valve reaches I2 at time t3, an FET 201 and an FET 221 are turned on, and a battery voltage VB is applied to the electromagnetic valve until time t5 is reached. The amount of displacement of the valve body reaches a target amount of control lift at time t4 between time t3 and time t5, that is, a movable core 304 comes into contact with a fixed core 301. The detection of the valve opening timing is performed during the period from time t3 to time t5.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: July 25, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Ayumu Hatanaka, Ryo Kusakabe, Motoyuki Abe, Toshihiro Aono, Teppei Hirotsu, Hideyuki Sakamoto, Takao Fukuda, Hideharu Ehara, Masahiro Toyohara, Akira Nishioka, Toshio Hori, Kiyoshi Aiki
  • Publication number: 20170051696
    Abstract: Because the relationship of the fuel injection quantity to a designated injection period differs in a half-lift region and a full-lift region, the purpose of the present invention is to bring the flow rate characteristics of an intermediate-lift region close to the flow rate characteristics of the full-lift region and improve the controllability of small fuel injection quantities. Provided are a peak current supply period in which a valve body of a fuel injection valve causes the magnetic force necessary for a valve-opening action to be generated, and a lift quantity adjustment period in which, after the peak current supply period, a current lower than the peak current is passed for a prescribed period; further provided is a current interrupt period in which a drive current is rapidly lowered before the lift quantity adjustment period.
    Type: Application
    Filed: March 25, 2015
    Publication date: February 23, 2017
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Osamu MUKAIHARA, Masahiro TOYOHARA, Hideharu EHARA
  • Patent number: 9422884
    Abstract: The internal combustion engine control system includes an injector to supply fuel to an internal combustion engine, control section for calculating power distribution time for the injector, a sensor to detect a valve opening of the injector, and control section calculating and storing valve opening delay time, which is a difference between a power distribution start time and a valve opening detection time. When a power distribution time determination section determines that the power distribution time for the injector is not less than a predetermined value, the valve opening delay time is calculated and stored. When the power distribution time for the injector is less than the predetermined value, the power distribution time for the injector is controlled based on the valve opening delay time stored in storing means to perform control to increase the injector power distribution time.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: August 23, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Yoshihisa Fujii, Takao Fukuda, Masahiro Toyohara
  • Publication number: 20160237937
    Abstract: An object of the invention is to provide a drive device of a fuel injection device which can increase the accuracy in an injected fuel injection amount by combining the fuel injections from a plurality of injection pulse widths. In the drive device of the fuel injection device which has a function of driving the fuel injection device such that the fuel injection is performed plural times in one combustion cycle, the fuel injection device is driven such that a fuel injection at a target opening level in which a valve element or a movable element of the fuel injection device reaches a regulation member and a fuel injection at an intermediate opening level in which the valve element does not reach the regulation member are included in the plural times of division injections performed in one combustion cycle.
    Type: Application
    Filed: June 16, 2014
    Publication date: August 18, 2016
    Inventors: Ryo KUSAKABE, Toshihiro AONO, Motoyuki ABE, Takuya MAYUZUMI, Masahiro TOYOHARA, Takashi OKAMOTO, Osamu MUKAIHARA, Shinji NAKAGAWA, Yusuke KIHARA
  • Publication number: 20160208725
    Abstract: An internal-combustion-engine fuel injection control device which can accurately control a boosted voltage applied to a fuel injection valve during fuel injection and can control a variation in a fuel injection amount without increasing a size or a cost of the fuel injection control device even when a width of a fuel injection driving pulse to drive the fuel injection valve is small is provided. A fuel injection control device includes a boosting operation control unit configured to start a boosting operation at predetermined timing regardless of an amount of a detected voltage when the detected voltage is higher than a threshold voltage for starting boosting and is lower than a threshold voltage for stopping boosting.
    Type: Application
    Filed: June 13, 2014
    Publication date: July 21, 2016
    Inventors: Takao FUKUDA, Hideyuki SAKAMOTO, Masahiro TOYOHARA, Yoshihisa FUJII, Osamu MUKAIHARA, Mitsuhiko WATANABE, Takeshi KONNO
  • Publication number: 20160177855
    Abstract: A drive device capable of detecting individual variations of an injection quantity of a fuel injection device of each cylinder and adjusting a current waveform provided to an injection pulse width and a solenoid such that the individual variations of the fuel injection devices are reduced. The fuel injection device in the present invention includes a valve body that closes a fuel passage by coming into contact with a valve seat and opens the fuel passage by separating from the valve seat and a magnetic circuit constructed of a solenoid, a fixed core, a nozzle holder, a housing, and a needle and when a current is supplied to the solenoid, a magnetic suction force acts on the needle and the needle has a function to open the valve body by colliding against the valve body after performing a free running operation and changes of acceleration of the needle due to collision of the needle against the valve body are detected by a current flowing through the solenoid.
    Type: Application
    Filed: July 29, 2013
    Publication date: June 23, 2016
    Inventors: Ryo KUSAKABE, Motoyuki ABE, Ayumu HATANAKA, Toshihiro AONO, Teppei HIROTSU, Hideyuki SAKAMOTO, Masahiro TOYOHARA, Osamu MUKAIHARA, Takao FUKUDA, Yoshihito YASUKAWA, Akiyasu MIYAMOTO
  • Publication number: 20160138511
    Abstract: Provided is a control device for an internal combustion engine which can suppress a relative variation in the fuel injection amount for each cylinder. A drive pulse width to drive the fuel injection valve for injecting the fuel is calculated according to a driving state of the internal combustion engine, any one or both of a valve-opening response delay time and a valve-closing response delay time with respect to a drive pulse signal of the fuel injection valve for each fuel injection value are calculated, and the drive pulse width is corrected to make an injection amount of each fuel injection valve matched to a predetermined injection amount based on any one or both of the valve-opening response delay time and the valve-closing response delay time calculated for each fuel injection valve.
    Type: Application
    Filed: May 16, 2014
    Publication date: May 19, 2016
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Masahiro TOYOHARA, Osamu MUKAIHARA, Hideyuki SAKAMOTO, Takao FUKUDA, Masayoshi KAWATSU
  • Publication number: 20160076498
    Abstract: Provided are an electromagnetic valve control unit and a fuel injection control device using the same that can precisely detect a change of an operating state of an electromagnetic valve, that is, a valve opening time or a valve closing time of the electromagnetic valve, precisely correct a drive voltage or a drive current applied to the electromagnetic valve, and appropriately control opening/closing of the electromagnetic valve, with a simple configuration. In an electromagnetic valve control unit for controlling opening/closing of an electromagnetic valve by a drive voltage and a drive current to be applied, the drive voltage and the drive current applied to the electromagnetic valve are corrected on the basis of a detection time of an inflection point from time series data of the drive voltage and the drive current when the electromagnetic valve is opened/closed.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 17, 2016
    Inventors: Toshihiro AONO, Motoyuki ABE, Ryo KUSAKABE, Teppei HIROTSU, Ayumu HATANAKA, Hideyuki SAKAMOTO, Takao FUKUDA, Masahiro TOYOHARA, Osamu MUKAIHARA
  • Publication number: 20160047330
    Abstract: An object of the invention is to reduce an injection quantity of minimum by reducing difference in machines of fuel injection valves and difference in injection quantities of fuel injection valves caused by difference in characteristics. A fuel injection valve drive unit includes a unit that individually sets drive current waveform profiles according to cylinders, and includes a unit that individually sets drive current waveform profiles of the fuel injection valves on the basis of identification information based on injection quantity characteristics of the fuel injection valves.
    Type: Application
    Filed: February 7, 2014
    Publication date: February 18, 2016
    Inventors: Osamu MUKAIHARA, Masahiro TOYOHARA