Patents by Inventor Masahiro Tsuchiya

Masahiro Tsuchiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8294782
    Abstract: An electromagnetic field high speed imaging apparatus, using an image sensing element having a filter function for each pixel, converts a local polarization state in detection light containing a difference frequency component ?f (|fLO?fRF|) between the modulation frequency fLO of irradiated light and the frequency fRF of the electromagnetic field emitted from a subject into local intensity of light, and captures it by an image sensor of an imaging unit to generate a two-dimensional image of distribution of the near electromagnetic field emitted from the subject. Each pixel of the image sensor comprises a photoelectric conversion element for converting the detection light from the optical unit into an electric charge, a plurality of charge storages, and a charge splitting part for dividing the electric charge generated in the photoelectric conversion element between the plurality of charge storages.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: October 23, 2012
    Assignees: Stanley Electric Co., Ltd., National Institute of Information and Communications Technology
    Inventors: Ryohei Ikeno, Masahiro Tsuchiya
  • Publication number: 20120251215
    Abstract: A printer including: a fixed part; a movable part that is connected to the fixed part rotatably around a rotation center such that one of an open state and a closed state is selectable; a cylindrical body configured to transfer a print medium; a holding part configured to hold the cylindrical body; and a restraint part configured to restrain the holding part to the movable part such that the movable part can slide in a radial direction of the rotation center; wherein the restraint part includes: an engaging part that forms a part of one of the holding part and the movable part; and an engaged part that forms a part of another one that is engaged to the engaging part, and the fixed part includes a storing part configured to store spindles of the transfer cylindrical body.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 4, 2012
    Applicant: FUJITSU COMPONENT LIMITED
    Inventors: Masahiro Tsuchiya, Yukihiro Mori
  • Patent number: 8270780
    Abstract: It is an object of the present invention to provide an optical switch system using optical interference. An optical switch system (1) comprises an input part (2) of an optical signal, a branching part (3) of the signal, a main Mach-Zehnder waveguide (MZC) (7), a first intensity modulator (9) provided on a first arm (4) for controlling an amplitude of an optical signal propagating through the first arm (4), a second intensity modulator (10) provided on a second arm (5) for controlling an amplitude of an optical signal propagating through the second arm (5), and a combining part (6) of the signals outputted from the first arm and the second arm, wherein one or both of the branching part (3) and the combining part (6) are X-branched.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: September 18, 2012
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 8152393
    Abstract: A printer device is disclosed that has a cutter function and a thermal head, and is low profile but is suitable for thick paper. The printer device includes a first module and a second module. The first module includes a turning blade driving motor, a platen roller driving motor, a platen roller driven to rotate by the platen roller driving motor, and a fixed blade provided on a first frame. The second module includes a printing head and a turning blade provided on a second frame. When the first module and the second module are connected together, the printing head faces the platen roller, the turning blade faces the fixed blade, and rotation of the turning blade driving motor is transmitted to the turning blade.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 10, 2012
    Assignee: Fujitsu Component Limited
    Inventors: Masahiro Tsuchiya, Yukihiro Mori, Sumio Watanabe
  • Publication number: 20110242644
    Abstract: It is an object of the present invention to provide an apparatus that can obtain a multiplied harmonic signal fast and with ease, and the method using the apparatus. The object is attained by the method for obtaining a multiple harmonic signal comprises, suppressing a different parity optical signal having parity different from fundamental optical signals; suppressing residual optical signals using an optical filter after suppressing the different parity optical signal; and obtaining the frequency difference component using the fundamental optical signals, and the device realizing the method.
    Type: Application
    Filed: June 13, 2011
    Publication date: October 6, 2011
    Applicant: NATIONAL INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
    Inventors: Tetsuya KAWANISHI, Takahide Sakamoto, Masahiro Tsuchiya
  • Publication number: 20110236117
    Abstract: A cutting apparatus includes a fixed blade module including a fixed blade, a movable blade module including a movable blade that moves when the movable blade module is driven, and a drive module configured to drive the movable blade module. The fixed blade and the movable blade are configured to cut a recording medium. The fixed blade module, the movable blade module, and the drive module are detachably connected.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 29, 2011
    Applicant: FUJITSU COMPONENT LIMITED
    Inventors: Masahiro Tsuchiya, Yukihiro Mori
  • Patent number: 8023775
    Abstract: An optical frequency COM generator generating an optical frequency COM having flat spectrum characteristics using a single modulator. The optical frequency COM generator has a drive signal system (11) and a bias signal system (14) which drive a first drive signal (9), a second drive signal (10) and bias signals (12, 13) to satisfy the following expression (I). ?A+??=?/2 (I). (where, ?A and ?? are defined as ?A?(A1?A2)/2 and ???(?1??2)/2, respectively, A1 and A2 represent the amplitudes of the first and second drive signals when they are inputted to the electrodes of the first and second drive signals, respectively, and ?1 and ?2 represent the phases of bias voltages applied to first and second waveguides, respectively.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: September 20, 2011
    Assignee: National Institute of Information and Communications Technology
    Inventors: Takahide Sakamoto, Tetsuya Kawanishi, Masahiro Tsuchiya, Masayuki Izutsu
  • Patent number: 8016504
    Abstract: A printer having a platen roller and a module that are engagable with each other for printing on paper is disclosed. The printer includes a status detecting mechanism including a detecting part having a detection function for detecting a status of the printer, a restricting part for restricting the detection function of the detecting part, and a function restriction releasing part for releasing the restricted function of the detecting part. The engagement of the platen roller and the module displaces the function restriction releasing part. The displacement causes the function restriction releasing part to release the restricted function of the detecting part.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: September 13, 2011
    Assignee: Fujitsu Component Limited
    Inventors: Masahiro Tsuchiya, Yukihiro Mori, Sumio Watanabe
  • Patent number: 7991298
    Abstract: It is an object of the present invention to provide an optical modulation system capable of suppressing a carrier component (f0) and a high order component (such as a second order component (f0±2fm)). The optical modulation system includes Mach-Zehnder waveguide (8), a first intensity modulator (9) provided on a first arm (4), a second intensity modulator (10) provided on a second arm (5), a first main Mach-Zehnder electrode (MZCA electrode) (13a), and a second main Mach-Zehnder electrode (MZCB electrode) (13b). Non-desired components propagating the respective arms are made to have reverse phase before optical signals are combined, whereby the optical modulation system is capable of suppressing the non-desired components when the optical signals are combined.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 2, 2011
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 7986452
    Abstract: It is an object of the present invention to provide an apparatus that can obtain a multiplied harmonic signal fast and with ease, and the method using the apparatus. The object is attained by the method for obtaining a multiple harmonic signal comprises, suppressing a different parity optical signal having parity different from fundamental optical signals; suppressing residual optical signals using an optical filter after suppressing the different parity optical signal; and obtaining the frequency difference component using the fundamental optical signals, and the device realizing the method.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: July 26, 2011
    Assignee: National Institute Of Information And Communications Technology
    Inventors: Tetsuya Kawanishi, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 7957653
    Abstract: There is provided an optical modulator capable of controlling the phase of a USB signal and the phase of an LSB signal of an optical FSK modulated signal. A modulation signal is applied to a main Mach-Zehnder electrode (or an electrode C) (11) of a main Mach-Zehnder waveguide (MZC) (8) to switch the USB signal and the LSB signal, and so FSK modulation can be made. In order to control the phase of the optical signal to be outputted from the main Mach-Zehnder waveguide (MZC) (8), bias voltage is applied to the main Mach-Zehnder electrode (11), and the phases of the USB signal and the LSB signal are controlled. By doing so, FSK modulation with adjusted phases can be performed.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: June 7, 2011
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 7957652
    Abstract: It is an object of the present invention to provide an optical modulator which is capable of adjusting optical intensity of optical signals which contains non-desired components so that the intensity of the components become at a similar level, whereby the optical modulator is capable of effectively suppressing the non-desired components when the optical signals are combined.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: June 7, 2011
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya
  • Patent number: 7943849
    Abstract: Provided is a photoelectric conversion device capable of improving a conversion efficiency. In a dye-sensitized photoelectric conversion device including a working electrode and a facing electrode, and an electrolyte inclusion, a dye is carried on a metal-oxide semiconductor layer of the working electrode. The dye includes cyanine dye having a benzyl group and an indolenine skeleton. Therefore, crystallization of the dye on the surface of the metal-oxide semiconductor layer is suppressed.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 17, 2011
    Assignee: TDK Corporation
    Inventors: Junji Tanabe, Masahiro Tsuchiya, Hidenori Shinohara, Atsushi Monden, Masahiro Shinkai, Tokuhiko Handa
  • Patent number: 7936996
    Abstract: An optical modulator achieving high extinction ratio and an optical modulator system. By a control system performing an adjustment method comprising predetermined steps by applying a bias voltage daringly to a modulation electrode for switching the USB signal and LSB signal of an established optical SSB modulator or optical FSK modulator, a means for adjusting bias voltage applied to each bias electrode preferably automatically is provided and a bias point where the extinction ratio of an optical modulator is maximized can be obtained.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: May 3, 2011
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya
  • Publication number: 20110097029
    Abstract: It is an object of the present invention to provide an optical frequency comb generator to generate an optical frequency comb with flat spectral properties using a single modulator. The optical frequency comb generator comprises: a drive signal system (11) and a bias signal system (14) for driving a first drive signal (9), a second drive signals (10), and bias signals (12,13) in accordance with the following Formula (I): ?A±??=?/2??(I) (where ?A and ?? are defined, respectively, as ?A=(A1?A2)/2 and ??=(?1??2)/2, A1 and A2 indicate, respectively, optical phase shift amplitudes guided by the first drive signal and the second drive signal when input into the electrodes, and ?1 and ?2 indicate, respectively, the phases of the bias signals applied to the first waveguide and the second waveguide).
    Type: Application
    Filed: January 27, 2009
    Publication date: April 28, 2011
    Applicant: NATIONAL INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
    Inventors: Takahide Sakamoto, Tetsuya Kawanishi, Masahiro Tsuchiya, Masayuki Izutsu
  • Publication number: 20110048198
    Abstract: A cutter includes a cutting part including a movable blade and a fixed blade, the movable blade being configured to be moved by a drive mechanism; an operation part configured to cause an edge of the movable blade to move in an arc by causing the drive mechanism to be driven; and a blade pressure generation part configured to cause a blade pressure to be generated between the movable blade and the fixed blade.
    Type: Application
    Filed: August 20, 2010
    Publication date: March 3, 2011
    Inventors: Sumio Watanabe, Yukihiro Mori, Masahiro Tsuchiya
  • Publication number: 20110043653
    Abstract: An electromagnetic field high speed imaging apparatus, using an image sensing element having a filter function for each pixel, converts a local polarization state in detection light containing a difference frequency component ?f (|fLO?fRF|) between the modulation frequency fLO of irradiated light and the frequency fRF of the electromagnetic field emitted from a subject into local intensity of light, and captures it by an image sensor of an imaging unit to generate a two-dimensional image of distribution of the near electromagnetic field emitted from the subject. Each pixel of the image sensor comprises a photoelectric conversion element for converting the detection light from the optical unit into an electric charge, a plurality of charge storages, and a charge splitting part for dividing the electric charge generated in the photoelectric conversion element between the plurality of charge storages.
    Type: Application
    Filed: August 13, 2010
    Publication date: February 24, 2011
    Applicants: Stanley Electric Co., Ltd., National Institute of Information and Communications Technology
    Inventors: Ryohei Ikeno, Masahiro Tsuchiya
  • Patent number: 7888398
    Abstract: This present invention can provide a novel pigment useful in color image displays to form blue pixels capable of providing high-level brightness and saturation, especially a finely-divided pigment which has bright hue and is excellent in pigment physical properties such as light fastness, solvent resistance and heat resistance, and a process for producing the same, a pigment dispersion making use of the pigment, and an ink for a color filters. The novel pigment is produced by forming into a pigment a subphthalocyanine represented by the following formula (1): wherein X is a halogen atom, presents diffraction peaks at diffraction angles (2?) 7.0°, 12.3°, 20.4° and 23.4° in x-ray diffraction, and has an average particle size of 120 to 20 nm.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: February 15, 2011
    Assignee: Dainichiseika Color & Chemicals Mfg. Co., Ltd.
    Inventors: Naoki Hirata, Hisao Okamoto, Yoshiyuki Zama, Michiei Nakamura, Tetsuya Yanagimoto, Hiroaki Yamada, Masahiro Tsuchiya
  • Patent number: 7876346
    Abstract: A thermal printer includes a first module having a motor and a thermal head support member to fix a thermal head, the thermal head support member having a fixed blade part working as a blade and an a second module being detachably coupled with the first module, the second module having a platen roller, a movable blade member and a movable blade member movement mechanism to move the movable blade member, wherein the movable blade member is disposed to face the fixed blade part and driving force of the motor is conveyed to the movable blade member movement mechanism, and thereby a cutter part is formed.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: January 25, 2011
    Assignee: Fujitsu Component Limited
    Inventors: Sumio Watanabe, Yukihiro Mori, Masahiro Tsuchiya
  • Patent number: 7864330
    Abstract: It is an object of the present invention to provide a method and a device for automatically calibrating a light intensity measurement device. The device (1) includes an optical switch (3) for switching a route of output from an optical intensity modulator (2), an optical attenuator (5) arranged on a first waveguide (4), a second waveguide (6), a light intensity measurement device (7), a control device (8) for receiving light intensity information measured by the light intensity measurement device (7) and controlling the signal to be applied to the optical intensity modulator (2), and a signal source (9) for receiving a control signal of the control device (8) and adjusting the signal to be applied to the optical intensity modulator (2).
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: January 4, 2011
    Assignee: National Institute of Information and Communications Technology
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu, Takahide Sakamoto, Masahiro Tsuchiya