Patents by Inventor Masakazu Edo
Masakazu Edo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12103116Abstract: An aluminum brazing sheet has a multilayer structure of two or more layers of at least a core material and a brazing material, wherein an Al—Si—Mg—Bi-based brazing material containing, by mass %, 0.01% to 2.0% of Mg, 1.5% to 14.0% of Si, and 0.005% to 1.5% of Bi is clad on one surface or both surfaces of the core material to be located at an outermost surface of the aluminum brazing sheet, in the Al—Si—Mg—Bi based brazing material, there are more than 10 Mg—Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m when observed in a surface layer plane direction and there are less than 2 Mg—Bi-based compounds having a diameter of 5.0 ?m or more, and in the brazing material, there are less than 5 Bi particles having a diameter of 5.0 ?m or more when observed in the surface layer plane direction.Type: GrantFiled: September 25, 2019Date of Patent: October 1, 2024Assignee: MA Aluminum CorporationInventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo
-
Patent number: 11759893Abstract: An aluminum alloy for flux-free brazing provided for brazing performed via an Al—Si-based brazing material without a flux in a non-oxidizing atmosphere without depressurization, includes: by mass %, 0.01% to 2.0% of Mg; and 0.005% to 1.5% of Bi, wherein in the aluminum alloy, there are more than 10 Mg—Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter per 10,000-?m2 visual field and there are less than 2 Mg—Bi-based compounds having a diameter of 5.0 ?m or more per 10,000-?m2 visual field in a cross section parallel to a rolling direction, and in the aluminum alloy, there are less than 5 Bi particles having a diameter of 5.0 ?m or more in terms of equivalent circle diameter per 10,000-?m2 visual field in the cross section parallel to the rolling direction.Type: GrantFiled: September 25, 2019Date of Patent: September 19, 2023Assignee: MA Aluminum CorporationInventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo
-
Publication number: 20230193431Abstract: The aluminum alloy clad material includes a core material and sacrificial materials disposed on both surfaces of the core material, the composition of the core material contains, by mass %, Mn: 0.7% to 1.8%, Si: 0.3% to 1.3%, Fe: 0.05% to 0.7% and Zn: 0.5% to 3.0% with a remainder consisting of Al and inevitable impurities, the composition of the sacrificial material contains, by mass %, Mn: 0.005% to 0.7%, Fe: 0.05% to 0.3% and Zn: 1.0% to 4.0% with a remainder consisting of Al and inevitable impurities, an amount of Zn in the sacrificial material is larger than an amount of Zn in the core material by 0.2% or more, and the potential of the core material after a brazing heat treatment is within a range of ?700 to ?870 mV.Type: ApplicationFiled: June 21, 2021Publication date: June 22, 2023Applicants: MA Aluminum Corporation, DENSO CORPORATIONInventors: Yoshiki MORI, Michihide YOSHINO, Masakazu EDO, Shohei IWAO, Hideyuki MIYAKE, Yousuke UCHIDA, Nobuhiro HONMA, Shogo YAMADA
-
Publication number: 20220072665Abstract: An aluminum brazing sheet has a multilayer structure of two or more layers of at least a core material and a brazing material, wherein an Al—Si—Mg—Bi-based brazing material containing, by mass %, 0.01% to 2.0% of Mg, 1.5% to 14.0% of Si, and 0.005% to 1.5% of Bi is clad on one surface or both surfaces of the core material to be located at an outermost surface of the aluminum brazing sheet, in the Al—Si—Mg—Bi based brazing material, there are more than 10 Mg—Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m when observed in a surface layer plane direction and there are less than 2 Mg—Bi-based compounds having a diameter of 5.0 ?m or more, and in the brazing material, there are less than 5 Bi particles having a diameter of 5.0 ?m or more when observed in the surface layer plane direction.Type: ApplicationFiled: September 25, 2019Publication date: March 10, 2022Applicant: Mitsubishi Aluminum Co., Ltd.Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO
-
Publication number: 20220063024Abstract: An aluminum alloy for flux-free brazing provided for brazing performed via an Al-Si-based brazing material without a flux in a non-oxidizing atmosphere without depressurization, includes: by mass %, 0.01% to 2.0% of Mg; and 0.005% to 1.5% of Bi, wherein in the aluminum alloy, there are more than 10 Mg-Bi-based compounds having a diameter of 0.01 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter per 10,000-?m2 visual field and there are less than 2 Mg-Bi-based compounds having a diameter of 5.0 ?m or more per 10,000-?m2 visual field in a cross section parallel to a rolling direction, and in the aluminum alloy, there are less than 5 Bi particles having a diameter of 5.0 ?m or more in terms of equivalent circle diameter per 10,000-?m2 visual field in the cross section parallel to the rolling direction.Type: ApplicationFiled: September 25, 2019Publication date: March 3, 2022Applicant: Mitsubishi Aluminum Co., Ltd.Inventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO
-
Patent number: 11045911Abstract: A sacrificial material on one surface of a core material, a Al brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance and satisfying (Bi+Mg)×Sr?0.1 is disposed on the other surface, Mg—Bi-based compounds of the brazing material with a diameter of 0.1-5.0 ?m are more than 20 per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, Mg: 0.1% to 0.7%, and Al balance, the sacrificial material contains Zn: 0.5% to 6.0% and Mg of which a content is limited to 0.1% or less, and a Mg concentration on a surface of the sacrificial material after brazing is 0.15% or less.Type: GrantFiled: July 1, 2020Date of Patent: June 29, 2021Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
-
Patent number: 11027373Abstract: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material disposed on other surface of the core material, contains, by mass %, Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance consisting of Al and inevitable impurities, and satisfies a relationship of (Bi+Mg)×Sr?0.1 by mass %, in which Mg—Bi-based compounds contained in the Al—Si—Mg—Bi-based brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 in number, and the core material contains Mn: 0.9% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, and a balance consisting of Al and inevitable impurities.Type: GrantFiled: June 30, 2020Date of Patent: June 8, 2021Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
-
Patent number: 11020824Abstract: An Al—Si—Mg—Bi-based brazing material containing Si: 6.0% to 14.0%, Fe: 0.05% to 0.3%, Mg: 0.02% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance of Al and inevitable impurities, and satisfies (Bi+Mg)×Sr?0.1, is disposed on both surfaces of a core material, Mg—Bi-based compounds of the brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter are more than 20 in number in 10,000 ?m2 and the Mg—Bi-based compounds with diameter of 5.0 ?m or more are less than 2 in number in 10,000 ?m2, the core material contains Mn: 0.8% to 1.8%, Si: 0.01% to 1.0%, Fe: 0.1% to 0.5%, and a balance of Al and inevitable impurities, and a cathode current density of a brazing material layer after a brazing heat treatment is 0.1 mA/cm2 or less.Type: GrantFiled: June 30, 2020Date of Patent: June 1, 2021Assignees: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki Mori, Hideyuki Miyake, Michihide Yoshino, Shohei Iwao, Masakazu Edo, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Hayaki Teramoto, Taketoshi Toyama
-
Patent number: 11002498Abstract: An aluminum alloy fin material for a heat exchanger in the present invention comprises an aluminum alloy having a composition containing Mn: 1.2 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.5 to 1.30%, Fe: 0.05 to 0.5%, and Zn: 1.0 to 3.0% by mass and a remainder comprising Al and an unavoidable impurity, further containing one or two or more of Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20% and Mg: 0.01 to 0.20% by mass as desired, and, after heating in brazing, has a tensile strength of 140 MPa or more, a proof stress of 50 MPa or more, an electrical conductivity of 42% IACS or more, an average grain diameter of 150 ?m or more and less than 700 ?m, and a potential of ?800 mV or more and ?720 mV or less.Type: GrantFiled: December 28, 2015Date of Patent: May 11, 2021Assignees: MITSUBISHI ALUMINUM CO., LTD., DENSO CORPORATIONInventors: Shigeki Nakanishi, Shohei Iwao, Masakazu Edo, Hayaki Teramoto, Manabu Hasegawa, Michiyasu Yamamoto, Shoei Teshima
-
Publication number: 20210001437Abstract: A sacrificial material on one surface of a core material, a Al brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance and satisfying (Bi+Mg)×Sr?0.1 is disposed on the other surface, Mg-Bi-based compounds of the brazing material with a diameter of 0.1-5.0 ?m are more than 20 per 10,000-?m2 and the Mg-Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, Mg: 0.1% to 0.7%, and Al balance, the sacrificial material contains Zn: 0.5% to 6.0% and Mg of which a content is limited to 0.1% or less, and a Mg concentration on a surface of the sacrificial material after brazing is 0.15% or less.Type: ApplicationFiled: July 1, 2020Publication date: January 7, 2021Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
-
Publication number: 20210001436Abstract: An aluminum alloy clad material having four layers includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material which clads the other surface thereof on one surface of the sacrificial material on an opposite side to the core material, the brazing material containing Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and Al balance, and satisfying (Bi+Mg)×Sr?0.1, Mg—Bi-based compounds contained in the brazing material with a diameter of 0.1-5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 before brazing, and the core material contains Mn: 1.0% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.1% to 0.7%, and a balance consisting of Al and inevitable impurities.Type: ApplicationFiled: June 30, 2020Publication date: January 7, 2021Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
-
Publication number: 20210001435Abstract: An Al—Si—Mg—Bi-based brazing material containing Si: 6.0% to 14.0%, Fe: 0.05% to 0.3%, Mg: 0.02% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance of Al and inevitable impurities, and satisfies (Bi+Mg)×Sr?0.1, is disposed on both surfaces of a core material, Mg—Bi-based compounds of the brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m in terms of equivalent circle diameter are more than 20 in number in 10,000 ?m2 and the Mg—Bi-based compounds with diameter of 5.0 ?m or more are less than 2 in number in 10,000 ?m2, the core material contains Mn: 0.8% to 1.8%, Si: 0.01% to 1.0%, Fe: 0.1% to 0.5%, and a balance of Al and inevitable impurities, and a cathode current density of a brazing material layer after a brazing heat treatment is 0.1 mA/cm2 or less.Type: ApplicationFiled: June 30, 2020Publication date: January 7, 2021Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki Teramoto, Taketoshi Toyama
-
Publication number: 20210001434Abstract: An aluminum alloy clad material includes: a sacrificial material on one surface of a core material; and an Al—Si—Mg—Bi-based brazing material disposed on other surface of the core material, contains, by mass %, Si: 6.0% to 14.0%, Mg: 0.05% to 1.5%, Bi: 0.05% to 0.25%, Sr: 0.0001% to 0.1%, and a balance consisting of Al and inevitable impurities, and satisfies a relationship of (Bi+Mg)×Sr?0.1 by mass %, in which Mg—Bi-based compounds contained in the Al—Si—Mg—Bi-based brazing material with a diameter of 0.1 ?m or more and less than 5.0 ?m are more than 20 in number per 10,000-?m2 and the Mg—Bi-based compounds with a diameter of 5.0 ?m or more are less than 2 in number, and the core material contains Mn: 0.9% to 1.7%, Si: 0.2% to 1.0%, Fe: 0.1% to 0.5%, Cu: 0.08% to 1.0%, and a balance consisting of Al and inevitable impurities.Type: ApplicationFiled: June 30, 2020Publication date: January 7, 2021Applicants: Mitsubishi Aluminum Co., Ltd., DENSO CORPORATIONInventors: Yoshiki MORI, Hideyuki MIYAKE, Michihide YOSHINO, Shohei IWAO, Masakazu EDO, Naoki SUGIMOTO, Nobuhiro HONMA, Shogo YAMADA, Hayaki TERAMOTO, Taketoshi TOYAMA
-
Patent number: 10518363Abstract: An aluminum alloy brazing sheet has high strength, corrosion resistance and elongation, and includes an aluminum alloy clad material. The material includes a core material, one surface of which is clad with a sacrificial material and an other surface of which is clad with an Al—Si-based or Al—Si—Zn-based brazing filler metal. The core material has a composition containing 1.3 to 2.0% Mn, 0.6 to 1.3% Si, 0.1 to 0.5% Fe and 0.7 to 1.3% Cu, by mass, with the balance Al and impurities. The sacrificial material has a composition containing more than 4.0% to 8.0% Zn, 0.7 to 2.0% Mn, 0.3 to 1.0% Si, 0.3 to 1.0% Fe and 0.05 to 0.3% Ti, by mass, with the balance Al and impurities. At least the core material has a lamellar crystal grain structure. Elongation of material is at least 4% and a tensile strength after brazing is at least 170 MPa.Type: GrantFiled: November 9, 2015Date of Patent: December 31, 2019Assignee: MITSUBISHI ALUMINUM CO., LTD.Inventors: Michihide Yoshino, Masakazu Edo
-
Patent number: 10378088Abstract: [Problem] There is provided an aluminum alloy fin material with high strength, superior brazability and superior corrosion resistance. [Solving means] An aluminum alloy fin material has a composition, in % by mass, of the following: Zr: 0.05 to 0.25%, Mn: 1.3 to 1.8%, Si: 0.7 to 1.3%, Fe: 0.10 to 0.35%, and Zn: 1.2 to 3.0%, the remainder being Al and inevitable impurities. The aluminum alloy fin material has a solidus temperature of 615° C. or higher, a tensile strength after brazing of 135 MPa or higher, a pitting potential after brazing in the range of ?900 to ?780 mV, and an average crystal grain diameter in a rolled surface after brazing in the range of 200 ?m to 1,000 ?m.Type: GrantFiled: December 14, 2015Date of Patent: August 13, 2019Assignee: MITSUBISHI ALUMINUM CO., LTD.Inventors: Michihide Yoshino, Masakazu Edo
-
Publication number: 20170349980Abstract: An aluminum alloy fin material has a composition, in % by mass, of the following: Zr: 0.05 to 0.25%, Mn: 1.3 to 1.8%, Si: 0.7 to 1.3%, Fe: 0.10 to 0.35%, and Zn: 1.2 to 3.0%, the remainder being Al and inevitable impurities. The aluminum alloy fin material has a solidus temperature of 615° C. or higher, a tensile strength after brazing of 135 MPa or higher, a pitting potential after brazing in the range of ?900 to ?780 mV, and an average crystal grain diameter in a rolled surface after brazing in the range of 200 ?m to 1,000 ?m.Type: ApplicationFiled: December 14, 2015Publication date: December 7, 2017Applicant: MITSUBISHI ALUMINUM CO., LTD.Inventors: Michihide YOSHINO, Masakazu EDO
-
Publication number: 20170304957Abstract: An aluminum alloy brazing sheet has high strength, corrosion resistance and elongation, and includes an aluminum alloy clad material. The material includes a core material, one surface of which is clad with a sacrificial material and an other surface of which is clad with an Al—Si-based or Al—Si—Zn-based brazing filler metal. The core material has a composition containing 1.3 to 2.0% Mn, 0.6 to 1.3% Si, 0.1 to 0.5% Fe and 0.7 to 1.3% Cu, by mass, with the balance Al and impurities. The sacrificial material has a composition containing more than 4.0% to 8.0% Zn, 0.7 to 2.0% Mn, 0.3 to 1.0% Si, 0.3 to 1.0% Fe and 0.05 to 0.3% Ti, by mass, with the balance Al and impurities. At least the core material has a lamellar crystal grain structure. Elongation of material is at least 4% and a tensile strength after brazing is at least 170 MPa.Type: ApplicationFiled: November 9, 2015Publication date: October 26, 2017Applicant: MITSUBISHI ALUMINUM CO., LTD.Inventors: Michihide YOSHINO, Masakazu EDO
-
Publication number: 20160187079Abstract: An aluminum alloy fin material for a heat exchanger in the present invention comprises an aluminum alloy having a composition containing Mn: 1.2 to 2.0%, Cu: 0.05 to 0.20%, Si: 0.5 to 1.30%, Fe: 0.05 to 0.5%, and Zn: 1.0 to 3.0% by mass and a remainder comprising Al and an unavoidable impurity, further containing one or two or more of Ti: 0.01 to 0.20%, Cr: 0.01 to 0.20% and Mg: 0.01 to 0.20% by mass as desired, and, after heating in brazing, has a tensile strength of 140 MPa or more, a proof stress of 50 MPa or more, an electrical conductivity of 42% IACS or more, an average grain diameter of 150 ?m or more and less than 700 ?m, and a potential of ?800 mV or more and ?720 mV or less.Type: ApplicationFiled: December 28, 2015Publication date: June 30, 2016Applicants: MITSUBISHI ALUMINUM CO., LTD., DENSO CORPORATIONInventors: Shigeki NAKANISHI, Shohei IWAO, Masakazu EDO, Hayaki TERAMOTO, Manabu HASEGAWA, Michiyasu YAMAMOTO, Shoei TESHIMA
-
Patent number: 9237682Abstract: This power module substrate with a heat sink includes a power module substrate having a circuit layer disposed on one surface of an insulating layer, and a heat sink bonded to the other surface of this power module substrate, wherein the bonding surface of the heat sink and the bonding surface of the power module substrate are each composed of aluminum or an aluminum alloy, a bonding layer (50) having a Mg-containing compound (52) (excluding MgO) which contains Mg dispersed in an Al—Si eutectic composition is formed at the bonding interface between the heat sink and the power module substrate, and the thickness t of this bonding layer (50) is within a range from 5 ?m to 80 ?m.Type: GrantFiled: March 29, 2013Date of Patent: January 12, 2016Assignee: MITSUBISHI MATERIALS CORPORATIONInventors: Yoshiyuki Nagatomo, Hiroya Ishizuka, Toshiyuki Nagase, Yoshirou Kuromitsu, Masakazu Edo, Hideyuki Miyake
-
Patent number: 9033206Abstract: In order to enable a satisfactory fluxless brazing without needing flux or vacuum facilities, a brazing object including an aluminum alloy material provided with an Al—Si—Mg brazing filler metal is joined by the Al—Si—Mg brazing filler metal without the use of flux by heating the aluminum alloy material, when raising the temperature in a brazing furnace, at least in a temperature range of 450° C. to before melting of the filler metal under a first inert gas atmosphere having an oxygen concentration of preferably 50 ppm and following by heating at least at or above a temperature at which the filler metal starts to melt under a second inert gas atmosphere having an oxygen concentration of preferably 25 ppm and a nitrogen gas concentration of preferably 10% by volume or less.Type: GrantFiled: November 22, 2013Date of Patent: May 19, 2015Assignee: MITSUBISHI ALUMINUM CO., LTD.Inventors: Masakazu Edo, Hideyuki Miyake, Masatoshi Akiyama, Yuji Nomura, Norihiro Nose, Hiroki Amano