Patents by Inventor Masaki Azuma

Masaki Azuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110079883
    Abstract: Provided is a ferroelectric thin film formed on a substrate and having an amount of remanent polarization increased in its entirety. The ferroelectric thin film contains a perovskite-type metal oxide formed on a substrate, the ferroelectric thin film containing a column group formed of multiple columns each formed of a spinel-type metal oxide, in which the column group is in a state of standing in a direction perpendicular to a surface of the substrate, or in a state of slanting at a slant angle in a range of ?10° or more to +10° or less with respect to the perpendicular direction.
    Type: Application
    Filed: September 24, 2010
    Publication date: April 7, 2011
    Applicants: CANON KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY, KYOTO UNIVERSITY
    Inventors: MIKIO SHIMADA, TOSHIAKI AIBA, TOSHIHIRO IFUKU, JUMPEI HAYASHI, MAKOTO KUBOTA, HIROSHI FUNAKUBO, YUICHI SHIMAKAWA, MASAKI AZUMA, YOSHITAKA NAKAMURA
  • Patent number: 7906889
    Abstract: Provided are a piezoelectric material without using lead or an alkali metal, the piezoelectric material having a stable crystal structure in a wide temperature range, high insulation property, and high piezoelectric property, and a piezoelectric element using the piezoelectric material, in which the piezoelectric material is made of a metal oxide having a tetragonal crystal structure and expressed by Ba(SixGeyTiz)O3 (here, 0?x?1, 0?y?1, and 0?z?0.5), the piezoelectric element includes the piezoelectric material and a pair of electrodes sandwiching the piezoelectric material, and at least one of the pair of electrodes is made of SrRuO3 or Ni.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: March 15, 2011
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Kyoto University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Tatsuo Furuta, Kaoru Miura, Kenichi Takeda, Makoto Kubota, Hiroshi Funakubo, Masaki Azuma, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Publication number: 20110012050
    Abstract: Provided is a piezoelectric material including a lead-free perovskite-type composite oxide which is excellent in piezoelectric characteristics and temperature characteristics and is represented by the general formula (1): xABO3-yA?BO3-zA?B?O3 in which A is a Bi element; A? is a rare earth element including La; B is at least one element selected from Ti, Zn, Sn and Zr; A? is at least one element selected from Ba, Sr and Ca; B? is at least one element selected from divalent, trivalent, pentavalent, tetravalent, and hexavalent elements; and x is a value of 0.10 or more and 0.95 or less, y is a value of 0 or more and 0.5 or less, and z is a value of 0 or more and 0.7 or less, provided that x+y+z=1.
    Type: Application
    Filed: March 18, 2009
    Publication date: January 20, 2011
    Applicants: UNIVERSITY OF YAMANASHI, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, CANON KABUSHIKI KAISHA, Tokyo University of Science Educational Foundation Administrative Organization, National Institute of Advanced Industrial Science and Technology
    Inventors: Jumpei Hayashi, Zuyi Zhang, Toshihiro Ifuku, Satoshi Wada, Keisuke Yamato, Nobuhiro Kumada, Masaki Azuma, Hiroshi Funakubo, Takashi Iijima, Soichiro Okamura
  • Publication number: 20100231095
    Abstract: Provided are a bismuth-based piezoelectric material whose insulation property is improved while its performance as a piezoelectric body is not impaired and a piezoelectric device using the piezoelectric material. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Bix(Fe1-yCoy)O3??(1) where 0.95?x?1.25 and 0?y?0.30, and a root mean square roughness Rq (nm) of a surface of the piezoelectric material satisfies a relationship of 0<Rq?25y+2 (0?y?0.30).
    Type: Application
    Filed: March 10, 2010
    Publication date: September 16, 2010
    Applicants: Canon Kabushiki Kaisha, Kyoto University, National Institute of Advanced Industrial Science Technology
    Inventors: Makoto Kubota, Kenji Takashima, Masaki Azuma, Yoshitaka Nakamura, Yuichi Shimakawa, Takashi Iijima, Bong-Yeon Lee
  • Publication number: 20100155647
    Abstract: Provided are an oxynitride piezoelectric material which exhibits ferroelectricity and has good piezoelectric properties and a method of producing the oxynitride piezoelectric material. The oxynitride piezoelectric material includes a tetragonal perovskite-type oxynitride represented by the following general formula (1): A1-xBix+?1B1-yB?y+?2O3-zNz??(1) where A represents a divalent element, B and B? each represent a tetravalent element, x represents a numerical value of 0.35 or more to 0.6 or less, y represents a numerical value of 0.35 or more to 0.6 or less, z represents a numerical value of 0.35 or more to 0.6 or less, and ?1 and ?2 each represent a numerical value of ?0.2 or more to 0.2 or less, in which the A includes at least one kind selected from Ba, Sr, and Ca and the B and the B? each include at least one kind selected from Ti, Zr, Hf, Si, Ge, and Sn.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 24, 2010
    Applicants: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, UNIVERSITY OF YAMANASHI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, TOKYO UNIVERSITY OF SCIENCE EDUCATIONAL FOUNDATION ADMINISTRATIVE ORGANIZATION
    Inventors: Hiroshi Saito, Takanori Matsuda, Kaoru Miura, Kenji Takashima, Masaki Azuma, Takashi Iijima, Hiroshi Funakubo, Soichiro Okamura, Nobuhiro Kumada, Satoshi Wada
  • Publication number: 20100025617
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A (ZnxTi1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Application
    Filed: July 24, 2009
    Publication date: February 4, 2010
    Applicants: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, SOPHIA UNIVERSITY, UNIVERSITY OF YAMANASHI, National Institute of Advanced Industrial Sciences and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Publication number: 20090315432
    Abstract: Provided are a piezoelectric material without using lead or an alkali metal, the piezoelectric material having a stable crystal structure in a wide temperature range, high insulation property, and high piezoelectric property, and a piezoelectric element using the piezoelectric material, in which the piezoelectric material is made of a metal oxide having a tetragonal crystal structure and expressed by Ba(SixGeyTiz)O3 (here, 0?x?1, 0?y?1, and 0?z?0.5), the piezoelectric element includes the piezoelectric material and a pair of electrodes sandwiching the piezoelectric material, and at least one of the pair of electrodes is made of SrRuO3 or Ni.
    Type: Application
    Filed: May 22, 2009
    Publication date: December 24, 2009
    Applicants: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Kyoto University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Tatsuo Furuta, Kaoru Miura, Kenichi Takeda, Makoto Kubota, Hiroshi Funakubo, Masaki Azuma, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Patent number: 6039782
    Abstract: The present invention relates to a process for producing granulated organic matters wherein a precipitated fraction obtaied in a settling tank from a methane fermentation fluid having been treated aerobically in an aeration tank is added to a fermentation waste fluid. According to the present invention, there is provided a process for producing physically stable granulated organic matters with reduced increase of stickiness occurring at the time of manufacturing granulated organic matters from fermentation waste fluid.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: March 21, 2000
    Assignee: Kyowa Hakko Kogyo Co., Ltd.
    Inventors: Akio Sota, Tomoo Okiura, Masaki Azuma
  • Patent number: 5565212
    Abstract: Disclosed is a process for producing a composition for ruminants, which is characterized in that a nucleus containing a physiologically active substance is coated with a coating material prepared by suspending in water (i) an emulsion comprising water and at least one hydrophobic substance hardly soluble in water and (ii) a slurry containing at least one polymer soluble in water of pH 5.0 or below and insoluble in water of pH over 5.0 In the process, an aqueous suspension is used for coating instead of a meterial dissolved in an organic solvent.
    Type: Grant
    Filed: March 16, 1995
    Date of Patent: October 15, 1996
    Assignee: Kyowa Hakko Kogyo Co., Ltd.
    Inventors: Yorozu Yokomori, Toshikazu Murayama, Tomoaki Masada, Motohiro Ohta, Masaki Azuma, Yoshio Yumiba
  • Patent number: 5376545
    Abstract: The present invention provides a DNA coding for uricase from the genus Cellulomonas and a process for producing uricase using a microorganism which carries a recombinant DNA containing the DNA.
    Type: Grant
    Filed: December 3, 1992
    Date of Patent: December 27, 1994
    Assignee: Kyowa Hakko Kogyo Co., Ltd.
    Inventors: Makoto Yagasaki, Shuichi Ishino, Kazuhisa Iwata, Masaki Azuma, Sadao Teshiba, Masaru Hasegawa, Kazuo Yamaguchi, Keiichi Yano, Yoshiharu Yokoo, Yukio Hashimoto
  • Patent number: 4749873
    Abstract: An anti-theft device for an automobile with high reliability is proposed. The device detects an intrusion and a battery disconnection and disables the engine. The device is powered by a battery prepared exclusively for the device besides the main battery of the automobile. The battery is mounted on the same board as the device, therefore increasing the reliability of that device. The device is simple to operate. When the driver leaves the car and the doors are locked, the anti-theft device is activated. No additional operation is required from the driver. The anti-theft device is even more reliable with the use of a key which has a bar-code printed on its surface.
    Type: Grant
    Filed: July 24, 1986
    Date of Patent: June 7, 1988
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahito Mutoh, Masaki Azuma