Patents by Inventor Masaki Iijima

Masaki Iijima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130087041
    Abstract: In a reclaiming apparatus (106) that includes an airtight container (106a) as an absorbent storing unit that stores a part of an absorbent that absorbs CO2 included in an exhaust gas and a heating unit that heats the absorbent stored in the airtight container (106a), a part of the absorbent stored in the airtight container (106a) is distributed, and a gaseous body is brought into counterflow contact with the absorbent that is distributed. As a result, since the gaseous body is brought into counterflow contact with a part of the absorbent stored in the absorbent storing unit, an absorbent component volatilizes and is separated from a degraded material, and the absorbent component can be extracted from the degraded material, whereby a loss of the absorbent can be reduced.
    Type: Application
    Filed: July 26, 2011
    Publication date: April 11, 2013
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Masahiko Tatsumi, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8414694
    Abstract: Provided are a CO2 absorber that reduces CO2 contained in flue gas; a regenerator that reduces CO2 contained in rich solvent absorbing CO2 to regenerate the rich solvent, so that lean solvent having the CO2 reduced in the regenerator is reused in the CO2 absorber; a heat exchanger that allows the rich solvent to exchange heat with the lean solvent; and a controller that controls to extract rich solvent portion that is part of the rich solvent, to allow the rich solvent portion to by pass the heat exchanger, and to be supplied into the top of the regenerator without exchanging heat so as to minimize a sum of an enthalpy that is taken out of the regenerator as CO2 gas accompanying steam and an enthalpy of the lean solvent after heat exchange with the rich solvent in the heat exchanger.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 9, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Kouki Ogura, Masahiko Tatsumi, Yasuyuki Yagi
  • Patent number: 8409339
    Abstract: A CO2 recovery system includes an absorption tower and a regeneration tower. CO2 rich solution is produced in the absorption tower by absorbing CO2 from CO2-containing gas. The CO2 rich solution is conveyed to the regeneration tower where lean solution is produced from the rich solution by removing CO2. A regeneration heater heats lean solution that accumulates near a bottom portion of the regeneration tower with saturated steam thereby producing steam condensate from the saturated steam. A steam-condensate heat exchanger heats the rich solution conveyed from the absorption tower to the regeneration tower with the steam condensate.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: April 2, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Takashi Kamijo, Takahito Yonekawa, Tomio Mimura, Yasuyuki Yagi
  • Patent number: 8398757
    Abstract: A CO2 recovering apparatus includes a CO2 absorber that brings flue gas containing CO2 and O2 into contact with CO2 absorbing liquid to reduce CO2 in the flue gas; and a regenerator that reduces CO2 in CO2 absorbing liquid (rich solvent) that absorbed CO2 in the CO2 absorber to regenerate the CO2 absorbing liquid, so that the regenerated CO2 absorbing liquid (lean solvent) having CO2 reduced in the regenerator is reused in the CO2 absorber. A lower liquid reservoir is located at the bottom of the CO2 absorber, and an air-bubble gathering member is arranged therein to gather air bubbles included in the absorbing liquid.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: March 19, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Masahiko Tatsumi, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8382882
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: February 26, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Patent number: 8361194
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: January 29, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Publication number: 20130014430
    Abstract: A method for generating electric power and for producing gasoline from methanol, includes the steps of: synthesizing gasoline by reacting methanol under a catalyst; recovering heat generated from the gasoline synthetic reaction of methanol by cooling the reaction with coolant to vaporize the coolant; and generating electric power by using the coolant vapor produced in the heat recovery. The power generation step may include generating electric power with a plurality of steam turbines in series, e.g., a high-pressure turbine, a medium-pressure turbine, and a low-pressure turbine.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 17, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki IIJIMA
  • Publication number: 20120328501
    Abstract: An air pollution control system includes a desulfurization apparatus 13 that reduces sulfur oxide contained in flue gas 12 supplied from a boiler 11; and a CO2 recovery apparatus 15 including a CO2 absorber 21 that reduces CO2 contained in flue gas 12 that has been desulfurized by the desulfurization apparatus, with the aid of an amine absorbent and an absorbent regenerator 22 that regenerates the amine absorbent. Part 14a of desulfurized flue gas 14 containing SOx is supplied to treated flue gas 16, from which CO2 has been reduced and which is discharged from a top portion of the CO2 absorber 21, so that remaining mist amine accompanying the treated flue gas 16 is neutralized to amine sulfate or amine sulfite.
    Type: Application
    Filed: November 28, 2011
    Publication date: December 27, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Tsuyoshi Oishi, Takashi Kamijo, Hiroshi Tanaka, Hiromitsu Nagayasu, Naohiko Ukawa
  • Publication number: 20120285171
    Abstract: A heat recovery system of a CO2 recovery unit (55) including an absorber that removes CO2 in flue gas (101) discharged from a boiler (51) by absorbing CO2 by an absorbent, and a regenerator that emits CO2 from the absorbent having absorbed CO2 for reusing the absorbent in the absorber. The heat recovery system further includes a Ljungström heat exchanger (57) that performs heat exchange between the flue gas (101) discharged from the boiler (51) and before reaching the CO2 recovery unit (55) and unburned air (102) supplied to the boiler (51), and an air preheater (58) that preheats the unburned air (102) before reaching the Ljungström heat exchanger (57) by exhaust heat from the CO2 recovery unit (55).
    Type: Application
    Filed: January 11, 2011
    Publication date: November 15, 2012
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Tsuyoshi Oishi, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Publication number: 20120269690
    Abstract: A carbon dioxide recovery system includes a carbon dioxide absorption tower for absorbing carbon dioxide in combustion exhaust gas into an absorbing solution by bringing the combustion exhaust gas into contact with the absorbing solution that absorbs carbon dioxide; a dissolved oxygen removing device that uses at least one device of a device for blowing bubbling gas into the rich absorbing solution into which carbon dioxide has been absorbed, a device for applying ultrasonic oscillation, and a device for heating the rich absorbing solution; a bubble removing device that turns the rich absorbing solution in the carbon dioxide absorption tower into a swirling flow or agitates the rich absorbing solution; and a regeneration tower that regenerates the absorbing solution by releasing carbon dioxide from the absorbing solution from which oxygen has been removed by the dissolved oxygen removing device and the bubble removing device and obtains carbon dioxide gas.
    Type: Application
    Filed: January 25, 2012
    Publication date: October 25, 2012
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Koji Kadono, Kazuhiko Kaibara
  • Publication number: 20120260801
    Abstract: A CO2 recovery system 10A has a CO2 recovery unit 11, a compression unit 12, and a condensed-water supply line 65A that supplies condensed water 64 to an absorbent regenerator 14. The CO2 recovery unit 11 includes a CO2 absorber 13 and the absorbent regenerator 14. The compression unit 12 has a first compressor 61-1 to an nth compressor 61-n that compress CO2 gas 56 emitted from the absorbent regenerator 14, a first separator 63-1 to an nth separator 63-n that reduce moisture in the CO2 gas 56, and a first heat exchanger 66-1 that performs heat exchange between the CO2 gas 56 emitted from the first compressor 61-1 and the condensed water 64 emitted from the first separator 63-1.
    Type: Application
    Filed: March 12, 2012
    Publication date: October 18, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki Iijima
  • Publication number: 20120255441
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Application
    Filed: May 17, 2012
    Publication date: October 11, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki Iijima
  • Publication number: 20120255306
    Abstract: A carbon dioxide recovery system includes a high-pressure turbine 11, an intermediate-pressure turbine 12, a low-pressure turbine 13, a main boiler 15 that generates steam 14 for driving these turbines, a carbon dioxide recovery unit 24 including a carbon dioxide absorber 21 that absorbs and reduces carbon dioxide in flue gas (emission gas) G emitted from the main boiler 15 using a carbon dioxide absorbent and an absorbent regenerator 23 that regenerates a carbon dioxide absorbent having absorbed the carbon dioxide using a regenerating superheater 22 to obtain a regenerated carbon dioxide absorbent, an auxiliary boiler 30 that generates saturated water vapor 31 to be supplied to the regenerating superheater 22 in the absorbent regenerator 23, and a steam turbine 32 that is driven by steam from the auxiliary boiler 30.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 11, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki Iijima
  • Publication number: 20120255442
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Application
    Filed: May 17, 2012
    Publication date: October 11, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki Iijima
  • Publication number: 20120255305
    Abstract: A carbon dioxide recovery system includes a high-pressure 11, a boiler 15, a carbon dioxide recovery unit 24 that includes a carbon dioxide absorber 21 that absorbs and reduces carbon dioxide in flue gas G emitted from the boiler 15 using a carbon dioxide absorbent and an absorbent regenerator 23 that regenerates a carbon dioxide absorbent having absorbed the carbon dioxide using a regenerating superheater 22 to obtain a regenerated carbon dioxide absorbent, a high-temperature and high-pressure steam extraction line L11 that extracts the high-temperature and high-pressure steam 14 from the boiler 15 before the steam is introduced into the high-pressure turbine 11, an auxiliary turbine 32 that recovers power with the high-temperature and high-pressure steam 14, and a steam supply line L12 that supplies emission steam 33 emitted from the auxiliary turbine 32 to the regenerating superheater 22 to be used as a heat source.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 11, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki IIJIMA
  • Publication number: 20120222394
    Abstract: An air pollution control apparatus according to an embodiment of the present invention includes: a stack that discharges flue gas discharged from a boiler outside; a blower that is provided downstream of the stack and draws in the flue gas; and a CO2 recovering apparatus that recovers CO2 in the flue gas drawn in by the blower. The stack includes a controlling unit that suppresses release of the flue gas outside from the stack and suppresses inflow of atmosphere to the stack, and the controlling unit is a channel forming unit that forms a serpentine channel through which the flue gas and the atmosphere in the stack flow.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 6, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki Iijima
  • Publication number: 20120210874
    Abstract: The carbon dioxide recovery system includes: a first steam line 21a through which low-pressure steam 14L is fed from an intermediate-pressure turbine 12 to a low-pressure turbine 13; a second steam line 21b into which the low-pressure steam 14L is branched from the first steam line 21a; a first regulation valve V1 for regulating the opening of the low-pressure steam 14L from 100% to 0%; a second regulation valve V2 for regulating the opening of the low-pressure steam 14L from 0% to 100% depending on the amount of control provided to the first regulation valve V1; a first auxiliary turbine 22A for recovering power using the low-pressure steam 14L being fed; and a first steam feed line 25L through which exhaust steam 23 discharged from the first auxiliary turbine 22A is supplied as a source of heat to a reboiler 24.
    Type: Application
    Filed: December 17, 2010
    Publication date: August 23, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki Iijima
  • Patent number: 8231719
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: July 31, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Ryuji Yoshiyama, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8226748
    Abstract: A CO2 reducing system (10A) is constituted by a low-temperature CO2 reducing apparatus (11-1) that includes a low-temperature absorber (1006-1) that reduces at least one of CO2 and H2S by bringing flue gas (1002) including at least one of CO2 and H2S into contact with a low-temperature absorbing solution (1005-1), a low-temperature regenerator (1008-1) that regenerates a low-temperature rich solution (1007-1), a low-temperature rich-solution supply line (12-1) that feeds the low-temperature rich solution (1007-1) to the low-temperature regenerator (1008-1), and a low-temperature lean-solution supply line (13-1) that feeds a low-temperature lean solution (1009-1) to the low-temperature absorber (1006-1) from the low-temperature regenerator (1008-1); and a high-temperature CO2 reducing apparatus (11-2) that is arranged on a side at which the flue gas (1002) is discharged, and that has the same configuration as the low-temperature CO2 reducing apparatus (11-1).
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: July 24, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Kouki Ogura, Yasuyuki Yagi
  • Publication number: 20120175889
    Abstract: The present invention is a gas turbine combined cycle power plant which generates electricity by fueling a gas turbine with crude oil or heavy oil and which is provided with a vacuum distillation unit which distills and extracts a light oil fraction from crude oil or heavy oil by keeping the interior thereof in an environment which lowers a boiling point of crude oil or heavy oil, and the vacuum distillation unit is provided with heaters which heat distillation materials by using low pressure steam and medium pressure steam generated in a gas turbine combined cycle.
    Type: Application
    Filed: December 18, 2009
    Publication date: July 12, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Toyoaki Komori, Ryotaro Kanai, Takeo Araki