Patents by Inventor Masaki Koutoku

Masaki Koutoku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7397977
    Abstract: A wave transmission medium includes an input port 3-1 and an output port 3-2. A field distribution 1 and a field distribution 2 are obtained by numerical calculations. The field distribution 1 is a field distribution of the propagation light (forward propagation light) launched into the input port 3-1. The field distribution 2 is a field distribution of the phase conjugate light (reverse propagation light) resulting from reversely transmitting from the output port side an output field that is expected to be output from the output port 3-2 when an optical signal is launched into the input port 3-1. According to the field distributions 1 and 2, a spatial refractive index distribution is calculated such that the phase difference between the propagation light and reverse propagation light is eliminated at individual points (x, z) in the medium.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: July 8, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Toshikazu Hashimoto, Ikuo Ogawa, Takeshi Kitagawa, Senichi Suzuki, Masahiro Yanagisawa, Tomohiro Shibata, Masaki Koutoku, Hiroshi Takahashi, Ryou Nagase, Masaru Kobayashi, Shuichiro Asakawa, Yoshiteru Abe, Tsutomu Kitoh, Takaharu Ohyama
  • Publication number: 20060126992
    Abstract: A wave transmission medium includes an input port 3-1 and an output port 3-2. A field distribution 1 and a field distribution 2 are obtained by numerical calculations. The field distribution 1 is a field distribution of the propagation light (forward propagation light) launched into the input port 3-1. The field distribution 2 is a field distribution of the phase conjugate light (reverse propagation light) resulting from reversely transmitting from the output port side an output field that is expected to be output from the output port 3-2 when an optical signal is launched into the input port 3-1. According to the field distributions 1 and 2, a spatial refractive index distribution is calculated such that the phase difference between the propagation light and reverse propagation light is eliminated at individual points (x, z) in the medium.
    Type: Application
    Filed: December 25, 2003
    Publication date: June 15, 2006
    Inventors: Toshikazu Hashimoto, Ikuo Ogawa, Takeshi Kitagawa, Senichi Suzuki, Masahiro Yanagisawa, Tomohiro Shibata, Masaki Koutoku, Hiroshi Takahashi, Ryou Nagase, Masaru Kobayashi, Shuichiro Asakawa, Yoshiteru Abe, Tsutomu Kitoh, Takaharu Ohyama
  • Patent number: 6731828
    Abstract: It is an object of the present invention to reduce the size of a circuit and the adverse effects of fabrication errors, while increasing yield. Signal light incident on a circuit through input waveguides propagates from the exterior to interior of the circuit while rotating counterclockwise. The signal light passes through a point of inflection in the center of the circuit, subsequently propagate clockwise from the interior to exterior of the circuit, and then exit output waveguides. Two arms constituting a delay circuit and optical couplers can be integrated together at such an interval that they are not coupled together. Therefore, the size of the circuit can be reduced compared to the prior art.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: May 4, 2004
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tsutomu Kitou, Yasuyuki Inoue, Manabu Oguma, Takayuki Mizuno, Yoshinori Hibino, Masaki Koutoku
  • Publication number: 20030012479
    Abstract: It is an object of the present invention to reduce the size of a circuit and the adverse effects of fabrication errors, while increasing yield. Signal light incident on a circuit through input waveguides propagates from the exterior to interior of the circuit while rotating counterclockwise. The signal light passes through a point of inflection in the center of the circuit, subsequently propagate clockwise from the interior to exterior of the circuit, and then exit output waveguides. Two arms constituting a delay circuit and optical couplers can be integrated together at such an interval that they are not coupled together. Therefore, the size of the circuit can be reduced compared to the prior art.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 16, 2003
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Tsutomu Kitou, Yasuyuki Inoue, Manabu Oguma, Takayuki Mizuno, Yoshinori Hibino, Masaki Koutoku