Patents by Inventor Masaki M. Yokose

Masaki M. Yokose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9634337
    Abstract: Cathode exhaust of an evaporatively cooled fuel cell stack (50) is condensed in a heat exchanger (12a, 23, 23a) having extended fins (14, 25a) or tubes (24, 24a) to prevent pooling of condensate, and/or having the entire exit surface of the condenser rendered hydrophilic with wicking (32) to conduct water away. The cathode exhaust flow paths may be vertical or horizontal, they may be partly or totally rendered hydrophilic, and if so, in liquid communication with hydrophilic end surfaces of the condenser, and the condensers (49) may be tilted away from a normal orientation with respect to earth's gravity.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: April 25, 2017
    Assignee: AUDI AG
    Inventors: Kazuo Saito, Sitaram Ramaswamy, Masaki M. Yokose, Richard R. Phillips, Michael L. Perry, Catherine M. Goodrich
  • Publication number: 20140065505
    Abstract: Cathode exhaust of an evaporatively cooled fuel cell stack (50) is condensed in a heat exchanger (12a, 23, 23a) having extended fins (14, 25a) or tubes (24, 24a) to prevent pooling of condensate, and/or having the entire exit surface of the condenser rendered hydrophilic with wicking (32) to conduct water away. The cathode exhaust flow paths may be vertical or horizontal, they may be partly or totally rendered hydrophilic, and if so, in liquid communication with hydrophilic end surfaces of the condenser, and the condensers (49) may be tilted away from a normal orientation with respect to earth's gravity.
    Type: Application
    Filed: May 4, 2011
    Publication date: March 6, 2014
    Inventors: Kazuo Saito, Sitaram Ramaswamy, Masaki M. Yokose, Richard R. Phillips, Michael L. Perry, Catherine M. Goodrich
  • Patent number: 6958195
    Abstract: A burner assembly includes a catalyzed burner for combusting an anode exhaust stream from a polymer electrolyte membrane (PEM) fuel cell power plant. The catalysts coated onto the burner can be platinum, rhodium, or mixtures thereof. The burner includes open cells which are formed by a lattice, which cells communicate with each other throughout the entire catalyzed burner. Heat produced by combustion of hydrogen in the anode exhaust stream is used to produce steam for use in a steam reformer in the PEM fuel cell assembly. The catalyzed burner has a high surface area wherein about 70–90% of the volume of the burner is preferably open cells, and the burner has a low pressure drop of about two to three inches water from the anode exhaust stream inlet to the anode exhaust stream outlet. The burner assembly operates at essentially ambient pressure and at a temperature of up to about 1,700° F. (927° C.). The burner assembly can combust anode exhaust during normal operation of the fuel cell assembly.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: October 25, 2005
    Assignee: UTC Fuel Cells, LLC
    Inventors: Richard J. Assarabowski, Sean P. Breen, Steven A. Lozyniak, William T. Unkert, Joseph B. Wysocki, Masaki M. Yokose
  • Publication number: 20030157380
    Abstract: A burner assembly includes a catalyzed burner for combusting an anode exhaust stream from a polymer electrolyte membrane (PEM) fuel cell power plant. The catalysts coated onto the burner can be platinum, rhodium, or mixtures thereof. The burner includes open cells which are formed by a lattice, which cells communicate with each other throughout the entire catalyzed burner. Heat produced by combustion of hydrogen in the anode exhaust stream is used to produce steam for use in a steam reformer in the PEM fuel cell assembly. The catalyzed burner has a high surface area wherein about 70-90% of the volume of the burner is preferably open cells, and the burner has a low pressure drop of about two to three inches water from the anode exhaust stream inlet to the anode exhaust stream outlet . The burner assembly operates at essentially ambient pressure and at a temperature of up to about 1,700° F. (646° C.). The burner assembly can combust anode exhaust during normal operation of the fuel cell assembly.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 21, 2003
    Inventors: Richard J. Assarabowski, Sean P. Breen, Steven A. Lozyniak, William T. Unkert, Joseph B. Wysocki, Masaki M. Yokose