Patents by Inventor Masaki Matsunaga

Masaki Matsunaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9598084
    Abstract: A running control device of a vehicle executes a normal running mode with an engine coupled to drive wheels, a first inertia running mode with the engine stopped during running and an engine brake force reduced as compared to the normal running mode, and a second inertia running mode with the engine rotating during running and the engine brake force reduced as compared to the normal running mode. A determining portion determines a necessity of a brake negative pressure during the first or second inertia running mode. The necessity of the brake negative pressure is a condition for returning from the first inertia running mode and the second inertia running mode to the normal running mode. An upper limit value of the necessity of the brake negative pressure for returning from the first inertia running mode is smaller than that for returning from the second inertia running mode.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9598082
    Abstract: In consideration of an amplification effect of a braking force at the time of brake operation, upper-limits (?, ?) of a brake operation force (Brk) with which the execution of free-run coasting and neutral coasting is started may be different, on the basis of whether or not a brake booster can be filled with a negative pressure. Therefore, while the braking force at the time of brake operation is secured, the range of the brake operation force (Brk) with which coasting is executed can be enlarged, and an improvement in fuel economy can be made.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: March 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9598083
    Abstract: A controller is capable of controlling a coupled engine running mode, in which an engine is coupled to wheels and an engine brake is activated by driven rotation of the engine, and a coasting mode, in which an engine brake force is reduced with respect to that in the coupled engine running mode with mode with the engine brake on, and starts the coasting mode on the basis of the steering angle of a steering member. The controller starts the execution of a first coasting mode when the steering angle is equal to or less than a preset upper limit value and starts the execution of a second coasting mode when the steering angle is greater than the upper limit value. In the first coasting mode, the engine rotation is stopped, and in the second coasting mode, the engine remains rotating.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9561799
    Abstract: A controller is capable of controlling a coupled engine running mode, in which an engine is coupled to wheels and an engine brake is activated by driven rotation of the engine, and a coasting mode, in which an engine brake force is reduced with respect to that in the coupled engine running mode with mode with the engine brake on, and starts the coasting mode on the basis of the steering angle of a steering member. The controller starts the execution of a first coasting mode when the steering angle is equal to or less than a preset upper limit value and starts the execution of a second coasting mode when the steering angle is greater than the upper limit value. In the first coasting mode, the engine rotation is stopped, and in the second coasting mode, the engine remains rotating.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: February 7, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9550496
    Abstract: A travel control apparatus is configured to perform an overtaking travel on a host vehicle with a vehicle travelling ahead as an overtaking target vehicle during an autonomous driving of the host vehicle. In a case where the overtaking travel starts, the apparatus determines whether or not the overtaking target vehicle accelerates during the overtaking travel. In a case where it is determined that the overtaking target vehicle accelerates, the apparatus determines whether or not a front vehicle is present in front of the overtaking target vehicle. In a case where it is determined that the front vehicle is not present, the apparatus stops the overtaking travel of the host vehicle, and in a case where it is determined that the front vehicle is present, the apparatus continues the overtaking travel of the host vehicle under a predetermined condition.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: January 24, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ikuma Suzuki, Masaki Matsunaga, Tetsuya Taira
  • Publication number: 20170001642
    Abstract: A device performs speed control, determines the start and the end of an intervention operation, interrupts the speed control when an intervention operation is started, selects a correction candidate from a target speed and a target inter-vehicle distance based on the presence of a preceding vehicle and on the speed difference between the vehicle and the preceding vehicle, determines whether there is a change in the vehicle speed or in the inter-vehicle distance in a determination period, determines whether there is a difference between the target speed and the vehicle speed when the intervention is ended or between the target inter-vehicle distance and the inter-vehicle distance when the intervention is ended, and corrects the target speed or the target inter-vehicle distance under a predetermined condition. After the intervention operation is ended, the device restarts the speed control using the corrected target speed or the corrected target inter-vehicle distance.
    Type: Application
    Filed: June 27, 2016
    Publication date: January 5, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuichi KUMAI, Jun SATO, Masaki MATSUNAGA
  • Publication number: 20170003683
    Abstract: An automatic driving control device performs an automatic driving control for causing a vehicle to travel along a reference travel trajectory set in a lane in advance. The automatic driving control device reflects the steering by the driver during the automatic driving control in the travelling of the vehicle in a case where the steering by the driver is detected during the automatic driving control by the steering detection unit and when a position of the vehicle in the lane width direction is included in an allowance range, and alerts the driver to the travelling of the vehicle in a case where the steering by the driver is detected and in a case where it is determined that the position of the vehicle in the lane width direction is included in the second range.
    Type: Application
    Filed: June 20, 2016
    Publication date: January 5, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jun SATO, Masaki MATSUNAGA, Yuichi KUMAI
  • Patent number: 9500155
    Abstract: A vehicle controller includes an engine, a hydraulic brake device that applies a brake force to a vehicle in response to operation of a driver, and a brake booster that assists the braking operation of the driver by a negative pressure generated by drive of the engine. An ECU can automatically stop the engine according to a running state of the vehicle, can automatically start the engine when the negative pressure of the brake booster decreases below the predetermined negative pressure determination value, which has been set in advance, when the engine is in the automatic stop state, and can change the negative pressure determination value according to kinetic energy of the vehicle running in the automatic stop state of the engine.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 22, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaki Matsunaga
  • Publication number: 20160318518
    Abstract: A travel control apparatus is configured to perform an overtaking travel on a host vehicle with a vehicle travelling ahead as an overtaking target vehicle during an autonomous driving of the host vehicle. In a case where the overtaking travel starts, the apparatus determines whether or not the overtaking target vehicle accelerates during the overtaking travel. In a case where it is determined that the overtaking target vehicle accelerates, the apparatus determines whether or not a front vehicle is present in front of the overtaking target vehicle. In a case where it is determined that the front vehicle is not present, the apparatus stops the overtaking travel of the host vehicle, and in a case where it is determined that the front vehicle is present, the apparatus continues the overtaking travel of the host vehicle under a predetermined condition.
    Type: Application
    Filed: April 18, 2016
    Publication date: November 3, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ikuma SUZUKI, Masaki MATSUNAGA, Tetsuya TAIRA
  • Patent number: 9446767
    Abstract: A running control device of a vehicle includes an engine with a plurality of cylinders, and a clutch connecting/disconnecting a power transmission path between the engine and wheels, the running control device of a vehicle performing during an inertia running mode a neutral inertia running mode performed with the power transmission path between the engine and the wheels disconnected while the engine is kept operated, and a cylinder resting inertia running mode performed by resting at least a part of the cylinders of the engine while the power transmission path between the engine and the wheels is connected, the running control device of a vehicle increasing an operation region of performing the neutral inertia running mode in an operation region of performing the inertia running mode when idle learning performed in an idle operation state of the engine is incomplete, as compared to after completion of the idle learning.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 20, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuya Hirai, Rentaro Kuroki, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9440653
    Abstract: A drive control device for a vehicle including an engine and a clutch device provided in a power transmission path between the engine and a drive wheel includes: a normal traveling unit causing the vehicle to travel while the engine is connected to the drive wheel; a free-run coasting unit disconnecting the engine from the drive wheel during traveling and causing the vehicle to coast while the engine is stopped; a neutral coasting unit disconnecting the engine from the drive wheel during traveling and causing the vehicle to coast while the engine is autonomously operated; and a coasting switching control unit setting an upper limit value of an upward gradient of a road surface, at which the neutral coasting is stopped, such that the upper limit value is larger than an upper limit value of the upward gradient of the road surface, at which the free-run coasting is stopped.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: September 13, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9422908
    Abstract: A vehicular control apparatus performs control of enabling idle operation of an internal combustion engine that generates a motive power applied to a driving wheel of a vehicle if a vehicle speed of the vehicle is lower than a predetermined vehicle speed that is set in advance, and disabling idle operation of the internal combustion engine if the vehicle speed of the vehicle is equal to or higher than the predetermined vehicle speed, when the vehicle is in a state other than an acceleration running state. Accordingly, the vehicular control apparatus achieves an effect of making it possible to suppress the consumption of fuel.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 23, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaki Matsunaga, Koji Ito, Michihiro Miyashita, Nobukazu Ueki, Yasuyuki Mikami
  • Patent number: 9421977
    Abstract: A running control device is configured to execute an engine coupling running mode performed with an engine and wheels connected by a connecting/disconnecting device, a neutral inertia running mode performed with the engine separated from the wheels by the connecting/disconnecting device while the engine is supplied with fuel and allowed to perform self-sustaining rotation, and a free-run inertia running mode performed with the engine separated from the wheels by the connecting/disconnecting device while fuel supply to the engine is stopped to stop rotation. The neutral inertia running mode is terminated when an operation amount of the accelerator pedal becomes equal to or greater than a predefined first determination value. The free-run inertia running mode is terminated when an operation amount of the accelerator pedal becomes equal to or greater than a predefined second determination value larger than the first determination value.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 23, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9409576
    Abstract: A running control device of a vehicle including an engine, a brake operation member, and a brake booster, is configured to execute an engine brake running mode performed with the engine coupled to wheels and an inertia running mode performed with an engine brake force made lower than that in the engine brake running mode. The running control device executes first and second inertia running modes. The first inertia running mode is terminated when a brake request amount becomes equal to or greater than a predefined first determination value while the first inertia running mode is performed. The second inertia running mode is terminated and a return to the engine brake running mode is made when the brake request amount becomes equal to or greater than a predefined second determination value larger than the first determination value while the second inertia running mode is performed.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 9, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita, Yasunari Kido
  • Patent number: 9267447
    Abstract: An engine restart control apparatus mounted on a vehicle having an engine and a brake system includes: a negative pressure detector configured to detect booster negative pressure; an engine restart controller configured to restart the engine after a stop of the engine; and a storage memory configured to store the booster negative pressure detected by the negative pressure detector. The engine restart controller restarts the engine when the booster negative pressure is reduced by a first set value or more from a reference booster negative pressure, which is detected at a predetermined timing after the stop of the engine, among booster negative pressures stored in the storage memory.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: February 23, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junichi Morimura, Yasunari Kido, Masaki Matsunaga
  • Patent number: 9267448
    Abstract: A running control device of a vehicle includes an engine with a plurality of cylinders, a clutch connecting/disconnecting a power transmission path between the engine and wheels, a fuel pump transferring fuel toward an injector, and a fuel pressure control device controlling a fuel pressure in a transfer path of the fuel. The running control device of a vehicle performs a neutral inertia running mode performed with the power transmission path between the engine and the wheels disconnected, and a cylinder resting inertia running mode performed by resting at least a part of the cylinders of the engine with the power transmission path between the engine and the wheels connected, the fuel pressure during the neutral inertia running mode being made higher than the fuel pressure during the cylinder resting inertia running mode.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: February 23, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Publication number: 20150337789
    Abstract: A vehicle control apparatus performs control of enabling idle operation of an internal combustion engine that generates a motive power applied to a driving wheel of a vehicle if a vehicle speed of the vehicle is lower than a predetermined vehicle speed that is set in advance, and disabling idle operation of the internal combustion engine if the vehicle speed of the vehicle is equal to or higher than the predetermined vehicle speed, when the vehicle is in a state other than an acceleration running state. Accordingly, the vehicle control apparatus achieves an effect of making it possible to suppress the consumption of fuel.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventors: Masaki MATSUNAGA, Koji ITO, Michihiro MIYASHITA, Nobukazu UEKI, Yasuyuki MIKAMI
  • Publication number: 20150340884
    Abstract: Provided is an electric power supply control device for an electric power supply apparatus including a plurality of storage batteries and an electric power generator performing charging of the plurality of storage batteries, the electric power supply control device controlling a parallel connection between the plurality of storage batteries. Voltage adjustment by one of a) charging processing by electric power feeding from the electric power generator to the storage battery having the lowest output voltage among the plurality of storage batteries and b) discharging processing by electric power feeding from the storage battery having the highest output voltage among the plurality of storage batteries to a load circuit connected to the storage battery having the highest output voltage is performed. Parallel connection is performed in a case where output voltage difference between the plurality of storage batteries becomes equal to or less than a previously-determined threshold.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 26, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki SUZUKI, Masaki MATSUNAGA, Kazuhito ESHIMA
  • Publication number: 20150329007
    Abstract: A power supply control device includes: a generator driven by an engine; a lead acid battery and a lithium ion battery connected in parallel to the generator; an SOC detector that detects SOC of the lead acid battery; and a charge controller that controls charging of the lead acid battery. The charge controller performs the charge control based on a regenerative predictive amount estimated according to vehicle state information when the SOC is greater than a threshold SL1. The charge controller performs the charge control irrespective of the regenerative predictive amount when the SOC is less than SL1. When the surplus of charge of the lithium ion battery is larger than a deficient of charge of the lead acid battery, the charge controller performs the charge control based on the regenerative predictive amount, regardless of the SOC being less than SL1.
    Type: Application
    Filed: May 12, 2015
    Publication date: November 19, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaki MATSUNAGA, Kazuhito ESHIMA, Takeaki SUZUKI
  • Publication number: 20150307103
    Abstract: A running control device of a vehicle includes an engine and a brake booster amplifying a brake force by forming a negative pressure in a negative pressure tank by rotation of the engine. The running control device is configured to execute an engine brake running mode performed with the engine coupled to wheels such that an engine brake is applied by driven rotation of the engine and an inertia running mode performed with an engine brake force made lower than that of the engine brake running mode. The running control device executes a first inertia running mode performed with the rotation of the engine stopped and a second inertia running mode performed with the engine kept rotating as the inertia running mode in accordance with predefined respective execution conditions. The running control device comprises a prediction portion configured to predict a necessity of the negative pressure.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 29, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro KUROKI, Takuya HIRAI, Masaki MITSUYASU, Jonggap KIM, Masaki MATSUNAGA, Yasunar i KIDO, Takeaki SUZUKI, Takayuki KOGURE, Yukari OKAMURA, Akihiro SATO, Yusuke KINOSHITA