Patents by Inventor Masaki Mitsuyasu

Masaki Mitsuyasu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170074394
    Abstract: A vehicle controller includes a lock-up clutch disposed to a power transmission path between an engine and a driving wheel, and a clutch configured to connect and disconnect the power transmission path, wherein at the time of switching driven traveling for causing a vehicle to travel by connecting the power transmission path and inertia traveling for causing the vehicle to travel by disconnecting the power transmission path, the lock-up clutch and the clutch are switched at switching start timings different from each other.
    Type: Application
    Filed: November 4, 2016
    Publication date: March 16, 2017
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaki MITSUYASU
  • Patent number: 9573594
    Abstract: A vehicle control system for a vehicle including an engine having a plurality of cylinders, a power transmission route between the engine and drive wheels and a clutch device for selectively connecting and disconnecting the power transmission route. The vehicle control system can disconnect the power transmission route during running to allow the vehicle to coast. The vehicle control system including an electronic control unit (ECU) for detecting, among other things, vehicle speed and operation of an accelerator by a driver, as well as for executing and controlling various components of the vehicle.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaki Mitsuyasu
  • Patent number: 9561799
    Abstract: A controller is capable of controlling a coupled engine running mode, in which an engine is coupled to wheels and an engine brake is activated by driven rotation of the engine, and a coasting mode, in which an engine brake force is reduced with respect to that in the coupled engine running mode with mode with the engine brake on, and starts the coasting mode on the basis of the steering angle of a steering member. The controller starts the execution of a first coasting mode when the steering angle is equal to or less than a preset upper limit value and starts the execution of a second coasting mode when the steering angle is greater than the upper limit value. In the first coasting mode, the engine rotation is stopped, and in the second coasting mode, the engine remains rotating.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: February 7, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9518654
    Abstract: A vehicle controller includes a lock-up clutch disposed to a power transmission path between an engine and a driving wheel, and a clutch configured to connect and disconnect the power transmission path, wherein at the time of switching driven traveling for causing a vehicle to travel by connecting the power transmission path and inertia traveling for causing the vehicle to travel by disconnecting the power transmission path, the lock-up clutch and the clutch are switched at switching start timings different from each other.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: December 13, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaki Mitsuyasu
  • Patent number: 9446767
    Abstract: A running control device of a vehicle includes an engine with a plurality of cylinders, and a clutch connecting/disconnecting a power transmission path between the engine and wheels, the running control device of a vehicle performing during an inertia running mode a neutral inertia running mode performed with the power transmission path between the engine and the wheels disconnected while the engine is kept operated, and a cylinder resting inertia running mode performed by resting at least a part of the cylinders of the engine while the power transmission path between the engine and the wheels is connected, the running control device of a vehicle increasing an operation region of performing the neutral inertia running mode in an operation region of performing the inertia running mode when idle learning performed in an idle operation state of the engine is incomplete, as compared to after completion of the idle learning.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 20, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuya Hirai, Rentaro Kuroki, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9440653
    Abstract: A drive control device for a vehicle including an engine and a clutch device provided in a power transmission path between the engine and a drive wheel includes: a normal traveling unit causing the vehicle to travel while the engine is connected to the drive wheel; a free-run coasting unit disconnecting the engine from the drive wheel during traveling and causing the vehicle to coast while the engine is stopped; a neutral coasting unit disconnecting the engine from the drive wheel during traveling and causing the vehicle to coast while the engine is autonomously operated; and a coasting switching control unit setting an upper limit value of an upward gradient of a road surface, at which the neutral coasting is stopped, such that the upper limit value is larger than an upper limit value of the upward gradient of the road surface, at which the free-run coasting is stopped.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: September 13, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9421977
    Abstract: A running control device is configured to execute an engine coupling running mode performed with an engine and wheels connected by a connecting/disconnecting device, a neutral inertia running mode performed with the engine separated from the wheels by the connecting/disconnecting device while the engine is supplied with fuel and allowed to perform self-sustaining rotation, and a free-run inertia running mode performed with the engine separated from the wheels by the connecting/disconnecting device while fuel supply to the engine is stopped to stop rotation. The neutral inertia running mode is terminated when an operation amount of the accelerator pedal becomes equal to or greater than a predefined first determination value. The free-run inertia running mode is terminated when an operation amount of the accelerator pedal becomes equal to or greater than a predefined second determination value larger than the first determination value.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 23, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9409576
    Abstract: A running control device of a vehicle including an engine, a brake operation member, and a brake booster, is configured to execute an engine brake running mode performed with the engine coupled to wheels and an inertia running mode performed with an engine brake force made lower than that in the engine brake running mode. The running control device executes first and second inertia running modes. The first inertia running mode is terminated when a brake request amount becomes equal to or greater than a predefined first determination value while the first inertia running mode is performed. The second inertia running mode is terminated and a return to the engine brake running mode is made when the brake request amount becomes equal to or greater than a predefined second determination value larger than the first determination value while the second inertia running mode is performed.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 9, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita, Yasunari Kido
  • Patent number: 9381920
    Abstract: A vehicle control system is provided. The vehicle control system is applied to a vehicle comprising an engine having cylinders, a power transmission route between the engine and drive wheels, and a clutch selectively connecting and disconnecting the power transmission route. The vehicle control system disconnects the power transmission route during running to allow the vehicle to coast.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: July 5, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaki Mitsuyasu
  • Patent number: 9267448
    Abstract: A running control device of a vehicle includes an engine with a plurality of cylinders, a clutch connecting/disconnecting a power transmission path between the engine and wheels, a fuel pump transferring fuel toward an injector, and a fuel pressure control device controlling a fuel pressure in a transfer path of the fuel. The running control device of a vehicle performs a neutral inertia running mode performed with the power transmission path between the engine and the wheels disconnected, and a cylinder resting inertia running mode performed by resting at least a part of the cylinders of the engine with the power transmission path between the engine and the wheels connected, the fuel pressure during the neutral inertia running mode being made higher than the fuel pressure during the cylinder resting inertia running mode.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: February 23, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9206760
    Abstract: When a state in which fuel supply to a combustion chamber of an internal combustion engine is cut is recovered, since a vehicle control device starts the fuel supply by controlling the internal combustion engine at the time that a requested driving force that is being requested becomes the same as an actual driving force that is being actually generated, the vehicle control device can appropriately start the fuel supply when the fuel cut state is recovered. When, for example, the deviation between the requested driving force and the actual driving force becomes within a preset and predetermined range, as the time at which the requested driving force that is being requested becomes the same as the actual driving force that is being actually generated, the vehicle control device starts the fuel supply.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: December 8, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaki Mitsuyasu, Norimi Asahara
  • Publication number: 20150307102
    Abstract: A running control device of a vehicle includes an engine, a connecting/disconnecting device separating the engine and wheels, and a transmission transmitting power of the engine toward the wheels, the running control device being configured to execute a normal running-mode performed by using the power of the engine with the engine and the wheels coupled, a free-run inertia running-mode that is performed by separating the engine and the wheels and stopping the engine during running, and a neutral inertia running-mode that is a performed by separating the engine and the wheels and operating the engine in a self-sustaining manner during running, the running control device setting a gear ratio of the transmission on a low vehicle speed side in the case of return from the free-run inertia running-mode to the normal running-mode as compared to the case of return from the neutral inertia running-mode to the normal running-mode.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 29, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaki MITSUYASU, Jonggap KIM, Rentaro KUROKI, Takuya HIRAI, Masaki MATSUNAGA, Yasunari KIDO, Takeaki SUZUKI, Takayuki KOGURE, Yukari OKAMURA, Akihiro SATO, Yusuke KINOSHITA
  • Publication number: 20150307103
    Abstract: A running control device of a vehicle includes an engine and a brake booster amplifying a brake force by forming a negative pressure in a negative pressure tank by rotation of the engine. The running control device is configured to execute an engine brake running mode performed with the engine coupled to wheels such that an engine brake is applied by driven rotation of the engine and an inertia running mode performed with an engine brake force made lower than that of the engine brake running mode. The running control device executes a first inertia running mode performed with the rotation of the engine stopped and a second inertia running mode performed with the engine kept rotating as the inertia running mode in accordance with predefined respective execution conditions. The running control device comprises a prediction portion configured to predict a necessity of the negative pressure.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 29, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro KUROKI, Takuya HIRAI, Masaki MITSUYASU, Jonggap KIM, Masaki MATSUNAGA, Yasunar i KIDO, Takeaki SUZUKI, Takayuki KOGURE, Yukari OKAMURA, Akihiro SATO, Yusuke KINOSHITA
  • Publication number: 20150298700
    Abstract: A running control device of a vehicle includes an engine with cylinders, a clutch connecting/disconnecting a power transmission path between the engine and wheels, and a variable mechanism to vary an intake air amount sucked into the cylinders. The running control device performs a normal running mode by transmitting engine drive force to the wheels, a neutral inertia running mode by disconnecting the power transmission path between the engine and the wheels, and a cylinder resting inertia running mode by resting at least a part of the cylinders while the power transmission path between the engine and the wheels is connected. The running control device makes the intake air amount sucked into the cylinders larger at the time of return from the neutral inertia running mode to the normal running mode as compared to the case of return from the cylinder resting inertia running mode to the normal running mode.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 22, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rentaro KUROKI, Takuya HIRAI, Masaki MITSUYASU, Jonggap KIM, Masaki MATSUNAGA, Yasunari KIDO, Takeaki SUZUKI, Takayuki KOGURE, Yukari OKAMURA, Akihiro SATO, Yusuke KINOSHITA
  • Publication number: 20150298698
    Abstract: A running control device of a vehicle includes an engine with a plurality of cylinders and a clutch separating the engine and wheels, the running control device of a vehicle controls and supplies the clutch a line pressure acquired by adjusting an output oil pressure of an oil pump, the running control device of a vehicle is configured to execute a neutral inertia running mode that is an inertia running mode performed while the engine and the wheels are separated and a cylinder resting inertia running mode performed by stopping operation in at least a part of the cylinders of the engine while the engine and the wheels are coupled, the line pressure is low while the neutral inertia running mode is performed as compared to while the cylinder resting inertia running mode is performed.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 22, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jonggap KIM, Masaki MITSUYASU, Rentaro KUROKI, Takuya HIRAI, Masaki MATSUNAGA, Yasunari KIDO, Takeaki SUZUKI, Takayuki KOGURE, Yukari OKAMURA, Akihiro SATO, Yusuke KINOSHITA
  • Publication number: 20150300274
    Abstract: A running control device of a vehicle includes an engine with a plurality of cylinders, a clutch connecting/disconnecting a power transmission path between the engine and wheels, a fuel pump transferring fuel toward an injector, and a fuel pressure control device controlling a fuel pressure in a transfer path of the fuel. The running control device of a vehicle performs a neutral inertia running mode performed with the power transmission path between the engine and the wheels disconnected, and a cylinder resting inertia running mode performed by resting at least a part of the cylinders of the engine with the power transmission path between the engine and the wheels connected, the fuel pressure during the neutral inertia running mode being made higher than the fuel pressure during the cylinder resting inertia running mode.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 22, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro KUROKI, Takuya HIRAI, Masaki MITSUYASU, Jonggap KIM, Masaki MATSUNAGA, Yasunari KIDO, Takeaki SUZUKI, Takayuki KOGURE, Yukari OKAMURA, Akihiro SATO, Yusuke KINOSHITA
  • Publication number: 20150298701
    Abstract: A running control device has an engine coupling running mode enabling an engine brake running mode performed by coupling an engine and wheels with an engine brake applied by driven rotation of the engine, and an inertia running mode performed with an engine brake force lower than that of the engine brake running mode. The running control device includes a steering wheel steering angle as a condition of terminating the inertia running mode. The running control device performs a first inertia running mode with the rotation of the engine stopped and a second inertia running mode with the engine rotating. The first inertia running mode is terminated when the steering angle becomes equal to or greater than a predefined first determination value. The second inertia running mode is terminated when the steering angle becomes equal to or greater than a predefined second determination value larger than the first determination value.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 22, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeaki SUZUKI, Masaki MATSUNAGA, Yasunari KIDO, Takayuki KOGURE, Yukari OKAMURA, Rentaro KUROKI, Takuya HIRAI, Masaki MITSUYASU, Jonggap KIM, Akihiro SATO, Yusuke KINOSHITA
  • Publication number: 20150291171
    Abstract: A running control device of a vehicle executes a normal running mode with an engine coupled to drive wheels, a first inertia running mode with the engine stopped during running and an engine brake force reduced as compared to the normal running mode, and a second inertia running mode with the engine rotating during running and the engine brake force reduced as compared to the normal running mode. A determining portion determines a necessity of a brake negative pressure during the first or second inertia running mode. The necessity of the brake negative pressure is a condition for returning from the first inertia running mode and the second inertia running mode to the normal running mode. An upper limit value of the necessity of the brake negative pressure for returning from the first inertia running mode is smaller than that for returning from the second inertia running mode.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 15, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita
  • Publication number: 20150291165
    Abstract: A running control device of a vehicle including an engine, a connecting/disconnecting device separating the engine and wheels, and a transmission transmitting power of the engine toward the wheels, the running control device of a vehicle being configured to execute a normal running mode performed by using the power of the engine with the engine and the wheels coupled, a free-run inertia running mode that is an inertia running mode performed by separating the engine and the wheels and stopping the engine during running, and a neutral inertia running mode that is an inertia running mode performed by separating the engine and the wheels and operating the engine in a self-sustaining manner during running, the running control device of a vehicle setting a gear ratio of the transmission on a high vehicle speed side in the case of return from the free-run inertia running mode to the normal running mode.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 15, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaki MITSUYASU, Jonggap KIM, Rentaro KUROKI, Takuya HIRAI, Masaki MATSUNAGA, Yasunari KIDO, Takeaki SUZUKI, Takayuki KOGURE, Yukari OKAMURA, Akihiro SATO, Yusuke KINOSHITA
  • Publication number: 20150284004
    Abstract: A running control device of a vehicle includes an engine, a clutch separating the engine and wheels, and a torque converter with a lockup clutch transmitting power of the engine toward the wheels, the running control device of a vehicle is configured to execute a neutral inertia running mode that is an inertia running mode performed while the engine and the wheels are separated and a cylinder resting inertia running mode performed by stopping operation in at least some of cylinders of the engine while the engine and the wheels are coupled, the lockup clutch has a weak engagement force while the neutral inertia running mode is performed as compared to while the cylinder resting inertia running mode is performed.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 8, 2015
    Inventors: Jonggap Kim, Masaki Mitsuyasu, Rentaro Kuroki, Takuya Hirai, Masaki Matsunaga, Yasunari Kido, Takeaki Suzuki, Takayuki Kogure, Yukari Okamura, Akihiro Sato, Yusuke Kinoshita