Patents by Inventor Masaki Nakayama

Masaki Nakayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976859
    Abstract: A refrigeration cycle apparatus includes a refrigeration cycle, an adsorption section, and a first bypass flow path. The refrigeration cycle includes a compressor, a radiator, an expansion mechanism, and an evaporator, and uses a non-azeotropic refrigerant mixture including a first refrigerant and a second refrigerant. The adsorption section includes an adsorbent and stores the first refrigerant adsorbed by the adsorbent. The adsorbent adsorbs the first refrigerant, and does not adsorb the second refrigerant or the adsorption performance thereof for the second refrigerant is lower than the adsorption performance thereof for the first refrigerant. The first bypass flow path connects a first end which is a high-pressure part of the refrigeration cycle and a second end which is a low-pressure part of the refrigeration cycle. The adsorption section and a valve are disposed in the first bypass flow path.
    Type: Grant
    Filed: September 29, 2023
    Date of Patent: May 7, 2024
    Assignee: Daikin Industries, Ltd.
    Inventors: Hiroki Ueda, Atsushi Yoshimi, Eiji Kumakura, Masaki Tanaka, Masaki Nakayama, Ryuhei Kaji
  • Publication number: 20240131866
    Abstract: A pneumatic tire comprises: a tread portion having a ground contacting surface; a sidewall portions having an outer surface; a bead portions; a carcass extending between the bead portions; and an inner rubber extending between bead portions. The inner rubber comprises a first portion extending through the tread portion with a first thickness t1, and a second portion extending through the sidewall portion with a second thickness t2. The first thickness t1 is more than the second thickness t2. In a meridian cross section of the tire under its normal state, when a first reference point (Pb1), a second reference point (Pb2), a shoulder reference point (Ps), a reference line segment (Lb), and a shoulder line segment (Ls) are defined, then a length (L1) of the shoulder line segment (Ls) is 85.9% to 89.3% of a length (L2) of the reference line segment (Lb).
    Type: Application
    Filed: September 25, 2023
    Publication date: April 25, 2024
    Applicant: Sumitomo Rubber Industries, Ltd.
    Inventors: Tatsuya SASAKI, Tsukasa YANO, Rena ONITSUKA, Masaki TERASHIMA, Yusuke SUEYOSHI, Hiroyuki NAKAYAMA, Junya SUENO
  • Publication number: 20240066047
    Abstract: The present disclosure provides a compound having a STING agonistic activity, which may be expected to be useful as an agent for the prophylaxis or treatment of STING-related diseases. The present disclosure relates to a compound represented by the formula (I): wherein each symbol is as defined in the description, or a salt thereof.
    Type: Application
    Filed: May 1, 2023
    Publication date: February 29, 2024
    Inventors: MASATO YOSHIKAWA, MORIHISA SAITOH, TAISUKE KATO, YAYOI NAKAYAMA, TOMOHIRO SEKI, YASUO NAKAGAWA, YUSUKE TOMINARI, MASAKI SETO, YUSUKE SASAKI, MASANORI OKANIWA, TSUNEO ODA, AKITO SHIBUYA, KOSUKE HIDAKA, ZENYU SHIOKAWA, SHUMPEI MURATA, ATSUTOSHI OKABE, YOSHIHISA NAKADA, MICHIYO MOCHIZUKI, BRIAN SCOTT FREEZE, TAISUKE TAWARAISHI, YASUFUMI WADA, PAUL D. GREENSPAN
  • Publication number: 20240027115
    Abstract: In an air conditioner, during an operation, a gas-liquid two-phase non-azeotropic mixture refrigerant enters a receiver and accumulates in the receiver in a state where a gas phase and a liquid phase are separated. For example, when the non-azeotropic mixture refrigerant includes two components, i.e., a high-boiling refrigerant and a low-boiling refrigerant, the controller may estimate the ratio (composition ratio) between the low-boiling refrigerant and the high-boiling refrigerant in each of the gas phase and the liquid phase based on the temperature and the pressure of the non-azeotropic mixture refrigerant in the receiver. Thus, the controller may estimate the composition ratio of the liquid-phase non-azeotropic mixture refrigerant flowing out of the receiver as the composition ratio of the non-azeotropic mixture refrigerant circulating in the refrigerant circuit.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Ryuhei KAJI, Atsushi YOSHIMI, Masaki TANAKA, Hiroki UEDA, Masaki NAKAYAMA
  • Publication number: 20240027104
    Abstract: A refrigeration cycle apparatus includes a first refrigerant circuit and a second refrigerant circuit so as to improve the efficiency of operations. A first refrigerant circuit using a first refrigerant having a pressure of 1.2 MPa or less at 30° C. and a second refrigerant circuit using a second refrigerant having a pressure of 1.5 MPa or more at 30° C. are provided, and a dual cycle operation in which the first refrigerant circuit and the second refrigerant circuit are simultaneously operated to exchange heat between the first refrigerant and the second refrigerant and a single cycle operation in which the first refrigerant circuit is operated without operating the second refrigerant circuit to perform a cooling operation or heating operation are enabled in a switchable manner.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Hiroki IKARASHI, Atsushi YOSHIMI, Takuro YAMADA, Eiji KUMAKURA, Ikuhiro IWATA, Ryuhei KAJI, Takeru MIYAZAKI, Hiroki UEDA, Masaki TANAKA, Masaki NAKAYAMA, Hideho SAKAGUCHI, Osamu TANAKA, Hirokazu FUJINO
  • Publication number: 20240027105
    Abstract: A refrigeration cycle apparatus efficiently performs a cooling operation and a heating operation using a low-pressure refrigerant and a high-pressure refrigerant. A refrigeration cycle apparatus using a first refrigerant having 1 MPa or less at 30° C. and a second refrigerant having 1.5 MPa or more at 30° C. performs a heating operation by performing a two-stage refrigeration cycle including a use-side refrigeration cycle using the first refrigerant and a heat-source-side refrigeration cycle using the second refrigerant, and performs a cooling operation by performing a single-stage refrigeration cycle using the first refrigerant.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 25, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Atsushi YOSHIMI, Takuro YAMADA, Eiji KUMAKURA, Ikuhiro IWATA, Takeru MIYAZAKI, Hiroki UEDA, Masaki TANAKA, Masaki NAKAYAMA, Osamu TANAKA, Hirokazu FUJINO, Ryuhei KAJI
  • Publication number: 20240019183
    Abstract: A refrigerant recovery system includes a cylinder, a first detection unit, and a control unit. The cylinder accommodate a refrigerant filling a refrigeration cycle apparatus. The first detection unit detects a predetermined physical quantity in order to calculate a composition of the refrigerant accommodated in the cylinder. The control unit acquires a result of detection by the first detection unit and outputs the result as a first detection result.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 18, 2024
    Inventors: Ryuhei KAJI, Eiji KUMAKURA, Atsushi YOSHIMI, Masaki TANAKA, Hiroki UEDA, Masaki NAKAYAMA
  • Publication number: 20240019181
    Abstract: A refrigeration cycle apparatus includes a refrigeration cycle, an adsorption section, and a first bypass flow path. The refrigeration cycle includes a compressor, a radiator, an expansion mechanism, and an evaporator, and uses a non-azeotropic refrigerant mixture including a first refrigerant and a second refrigerant. The adsorption section includes an adsorbent and stores the first refrigerant adsorbed by the adsorbent. The adsorbent adsorbs the first refrigerant, and does not adsorb the second refrigerant or the adsorption performance thereof for the second refrigerant is lower than the adsorption performance thereof for the first refrigerant. The first bypass flow path connects a first end which is a high-pressure part of the refrigeration cycle and a second end which is a low-pressure part of the refrigeration cycle. The adsorption section and a valve are disposed in the first bypass flow path.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 18, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Hiroki UEDA, Atsushi YOSHIMI, Eiji KUMAKURA, Masaki TANAKA, Masaki NAKAYAMA, Ryuhei KAJI
  • Publication number: 20240019176
    Abstract: A refrigeration cycle apparatus efficiently performs a cooling operation and a heating operation using a low-pressure refrigerant and a high-pressure refrigerant. A refrigeration cycle apparatus performs a heating operation by performing a two-stage refrigeration cycle, the two-stage refrigeration cycle including a use-side refrigeration cycle using a first refrigerant having 1 MPa or less at 30° C. and a heat-source-side refrigeration cycle using a second refrigerant having 1.5 MPa or Imre at 30° C., and performs a cooling operation by performing a single-stage refrigeration cycle using the first refrigerant.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 18, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Atsushi YOSHIMI, Takuro YAMADA, Eiji KUMAKURA, Ikuhiro IWATA, Ryuhei KAJI, Takeru MIYAZAKI, Hiroki UEDA, Masaki TANAKA, Masaki NAKAYAMA
  • Publication number: 20240019178
    Abstract: A refrigeration cycle apparatus includes a main refrigerant circuit, a changer, and a controller. The main refrigerant circuit uses a non-azeotropic refrigerant mixture containing a first refrigerant and a second refrigerant. The changer changes a composition ratio between the first refrigerant and the second refrigerant in a refrigerant flowing through the main refrigerant circuit. The controller controls an operation of the changer. The controller executes a first mode and a second mode. The first mode is a mode in which the operation of the changing unit is controlled to cause substantially the second refrigerant alone to flow through the main refrigerant circuit. The second mode is a mode in which the operation of the changing unit is controlled to cause a refrigerant mixture of the first refrigerant and the second refrigerant to flow through the main refrigerant circuit.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Masaki TANAKA, Eiji KUMAKURA, Ikuhiro IWATA, Ryuhei KAJI, Atsushi YOSHIMI, Hiroki UEDA, Takuro YAMADA, Masaki NAKAYAMA
  • Publication number: 20240019184
    Abstract: A refrigerant recovery system performs separation of a first refrigerant from a refrigerant including the first refrigerant, and recovery of the refrigerant. The refrigerant recovery system includes a separation unit that perform the separation of the first refrigerant, and a storage unit that stores the refrigerant before the first refrigerant is separated or after the first refrigerant is separated.
    Type: Application
    Filed: September 27, 2023
    Publication date: January 18, 2024
    Inventors: Hiroki UEDA, Atsushi YOSHIMI, Eiji KUMAKURA, Masaki TANAKA, Masaki NAKAYAMA, Ryuhei KAJI
  • Patent number: 11289515
    Abstract: For the purpose of changing, in an external connection terminal of a display device that transmits a plurality of polarities of the image signals, the positions of pairs of electrodes to which signals of different polarities are applied, a display device includes a display area having a plurality of pixels, a wiring area in which a plurality of wires corresponding to the plurality of pixels are arranged, and an external connection terminal having a plurality of electrodes to which image signals to be transmitted to the plurality of wires are applied. In the display device, polarities of the image signals transmitted to wires adjacent to each other among the plurality of wires are different from each other in the display area. In the display device, the order of arrangement of the plurality of electrodes is different from the order of the image signals transmitted to the plurality of wires of the display area.
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: March 29, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaki Nakayama, Gen Nagaoka, Takashi Matsui
  • Publication number: 20210134839
    Abstract: For the purpose of changing, in an external connection terminal of a display device that transmits a plurality of polarities of the image signals, the positions of pairs of electrodes to which signals of different polarities are applied, a display device includes a display area having a plurality of pixels, a wiring area in which a plurality of wires corresponding to the plurality of pixels are arranged, and an external connection terminal having a plurality of electrodes to which image signals to be transmitted to the plurality of wires are applied. In the display device, polarities of the image signals transmitted to wires adjacent to each other among the plurality of wires are different from each other in the display area. In the display device, the order of arrangement of the plurality of electrodes is different from the order of the image signals transmitted to the plurality of wires of the display area.
    Type: Application
    Filed: May 28, 2018
    Publication date: May 6, 2021
    Inventors: MASAKI NAKAYAMA, GEN NAGAOKA, TAKASHI MATSUI
  • Publication number: 20200367363
    Abstract: A substrate connection structure includes a wiring substrate, a base having an insulating property, a first terminal portion, and a second. terminal portion, in which a plurality of first terminal portions are disposed side by side in a first array direction, and extend by being inclined relative to the first array direction so that extended lines of the first terminal portions in an extension direction cross at a first intersection, a plurality of second terminal portions are disposed side by side in a second array direction, and extend by being inclined relative to the second array direction so that extended lines of the second terminal portions in an extension direction cross at a second intersection, and a first intersection direction directed from a first. center position to the first intersection and a second intersection direction directed from a second center portion to the second intersection are forward directions.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 19, 2020
    Inventor: MASAKI NAKAYAMA
  • Publication number: 20200077333
    Abstract: A sensor device includes: a sensor that detects environment information; a battery that supplies electric power to the sensor device; and a connector that detachably attaches to an auxiliary battery for supplying electric power to the sensor device. The sensor device transmits the detected environment information to another sensor device, and when the auxiliary battery is not attached, the sensor device operates with electric power supply from the battery, and when the auxiliary battery is attached, the sensor device operates with electric power supply from either the battery or the auxiliary battery.
    Type: Application
    Filed: March 13, 2018
    Publication date: March 5, 2020
    Applicant: Fujikura Ltd.
    Inventors: Hiroyuki Kito, Katsuhiko Iwatsu, Masaki Nakayama, Yasuyuki Seki, Taku Taguchi, Kenta Kaneeda
  • Publication number: 20190380198
    Abstract: A circuit board includes a first row terminal group including terminal parts aligned in a predetermined direction and a second row terminal group including terminal parts aligned in parallel with and arranged in a zig-zag pattern with respect to the first row terminal group. The first row terminal group includes first row projecting terminal parts protruding toward the second row terminal group further than another terminal parts included in the first row terminal group, the second row terminal group includes second row projecting terminal parts projecting toward the first row terminal group further than another terminal parts included in the second row terminal group, and the first row projecting terminal parts and the second row projecting terminal parts are overlapped with and spaced apart from each other in the predetermined direction.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 12, 2019
    Inventor: MASAKI NAKAYAMA
  • Patent number: 10499495
    Abstract: A circuit board includes a first row terminal group including terminal parts aligned in a predetermined direction and a second row terminal group including terminal parts aligned in parallel with and arranged in a zig-zag pattern with respect to the first row terminal group. The first row terminal group includes first row projecting terminal parts protruding toward the second row terminal group further than another terminal parts included in the first row terminal group, the second row terminal group includes second row projecting terminal parts projecting toward the first row terminal group further than another terminal parts included in the second row terminal group, and the first row projecting terminal parts and the second row projecting terminal parts are overlapped with and spaced apart from each other in the predetermined direction.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 3, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventor: Masaki Nakayama
  • Publication number: 20190157625
    Abstract: The disclosure provides a production method for an EL device including a base layer, a light-emitting element layer, a plurality of terminals, and an electronic circuit board mounted on the plurality of terminals; the production method including: a preparation step of directly or indirectly applying heat and pressure to a prescribed region including the plurality of terminals without any overlap between the plurality of terminals and the electronic circuit board; and a thermocompression bonding step of thermocompression-bonding the plurality of terminals and the electronic circuit board.
    Type: Application
    Filed: February 28, 2017
    Publication date: May 23, 2019
    Inventor: Masaki NAKAYAMA
  • Patent number: 10224305
    Abstract: In order to inhibit defective connection between a bump of a semiconductor chip and an electrode pad of a substrate, a semiconductor device includes a substrate provided on a surface with a plurality of electrode pads 15, a semiconductor chip 20 provided on a surface with a plurality of bumps 21 substantially equal in size, and an anisotropic conductive film 30 interposed between the plurality of bumps 21 and the plurality of electrode pads 15 and electrically connecting each of the bumps 21 and corresponding one of the electrode pads 15. The plurality of electrode pads 15 includes a plurality of first electrode pads 15A positioned closest to an end 25 of the semiconductor chip 20, and a plurality of second electrode pads 15B positioned inside the plurality of first electrode pads 15A on the semiconductor chip 20. Each of the second electrode pads 15B is larger in area than each of the first electrode pads 15A.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: March 5, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaki Nakayama, Motoji Shiota, Takashi Matsui, Yasuhiko Tanaka, Hiroki Miyazaki, Seiji Muraoka
  • Patent number: 9995977
    Abstract: An array circuit board 11B includes a glass substrate, an IC chip 20, two ACFs 30, and a resin film 32. The IC chip 20 is disposed on the glass substrate. The ACFs 30 are disposed between the glass substrate and the IC chip 20 for electrically connecting the glass substrate and the IC chip 20 together. The ACFs 30 are separated from each other. The resin film 32 is made of resin material having cure shrinkage smaller than the ACFs 30 and disposed to fill a gap between the ACFs 30 adjacent to each other between the glass substrate and the IC chip 20.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: June 12, 2018
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaki Nakayama, Motoji Shiota, Takashi Matsui, Yasuhiko Tanaka, Hiroki Miyazaki