Patents by Inventor Masaki SHIMMURA
Masaki SHIMMURA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11268894Abstract: A flow cell includes a body and a flow channel. The body is formed out of blocks made of an uniaxial crystal material and joined to one another. The flow channel is formed inside the body, so that the flow cell is configured to be used to measure particles passing through the flow channel based on reception of scattered light generated from the particles. A crystallographic c-axis in a predetermined part of the body is configured to being substantially perpendicular to both a receiving direction and a polarization direction of the scattered light.Type: GrantFiled: December 24, 2020Date of Patent: March 8, 2022Assignee: RION CO., LTD.Inventors: Hiroaki Yaguchi, Yuki Yamakawa, Masaki Shimmura, Tomonobu Matsuda
-
Publication number: 20210199558Abstract: A flow cell includes a body and a flow channel. The body is formed out of blocks made of an uniaxial crystal material and joined to one another. The flow channel is formed inside the body, so that the flow cell is configured to be used to measure particles passing through the flow channel based on reception of scattered light generated from the particles. A crystallographic c-axis in a predetermined part of the body is configured to being substantially perpendicular to both a receiving direction and a polarization direction of the scattered light.Type: ApplicationFiled: December 24, 2020Publication date: July 1, 2021Inventors: Hiroaki YAGUCHI, Yuki YAMAKAWA, Masaki SHIMMURA, Tomonobu MATSUDA
-
Patent number: 10705010Abstract: A particle counter includes a detector that receives, using a light receiving element, interference light between scattered light and reference light, generates a detection signal corresponding to the interference light, and amplifies the detection signal using an amplifier; a counting unit that performs counting of the particle, based on the detection signal in a measurement period for measuring particle; and an optical path length variable unit that causes the optical path length of at least one of a first optical path and a second optical path to be changed at a predetermined rate, wherein the predetermined rate is set based on a flow velocity of the fluid so as to slow a change in a phase difference between the scattered light and the reference light and to make the frequency of the detection signal lower by changing the optical path length.Type: GrantFiled: March 1, 2019Date of Patent: July 7, 2020Assignee: RION Co., Ltd.Inventors: Tomonobu Matsuda, Masaki Shimmura, Mitsuaki Saitou, Yuki Yamakawa
-
Patent number: 10416069Abstract: A particle counter provided with: a detector configured to receive interference light by scattered light and reference light with a light receiving element, and generate a detection signal corresponding to the interference light; a filter configured to perform, with respect to the detection signal generated by the detector, a filtering process for passing a frequency component corresponding to an intensity change of the interference light; a determination unit configured to determine, from a peak level of the detection signal before filtering and a peak level of the detection signal after filtering, whether the detection signal is due to a particle; and a counting unit configured to perform, if it is determined by the determination unit that the detection signal is due to the particle, particle counting based on the detection signal after filtering.Type: GrantFiled: November 26, 2018Date of Patent: September 17, 2019Assignee: RION Co., Ltd.Inventors: Mitsuaki Saitou, Masaki Shimmura, Tomonobu Matsuda, Yuki Yamakawa
-
Publication number: 20190277745Abstract: A particle counter includes a detector that receives, using a light receiving element, interference light between scattered light and reference light, generates a detection signal corresponding to the interference light, and amplifies the detection signal using an amplifier; a counting unit that performs counting of the particle, based on the detection signal in a measurement period for measuring particle; and an optical path length variable unit that causes the optical path length of at least one of a first optical path and a second optical path to be changed at a predetermined rate, wherein the predetermined rate is set based on a flow velocity of the fluid so as to slow a change in a phase difference between the scattered light and the reference light and to make the frequency of the detection signal lower by changing the optical path length.Type: ApplicationFiled: March 1, 2019Publication date: September 12, 2019Inventors: Tomonobu MATSUDA, Masaki SHIMMURA, Mitsuaki SAITOU, Yuki YAMAKAWA
-
Publication number: 20190162645Abstract: A particle counter provided with: a detector configured to receive interference light by scattered light and reference light with a light receiving element, and generate a detection signal corresponding to the interference light; a filter configured to perform, with respect to the detection signal generated by the detector, a filtering process for passing a frequency component corresponding to an intensity change of the interference light; a determination unit configured to determine, from a peak level of the detection signal before filtering and a peak level of the detection signal after filtering, whether the detection signal is due to a particle; and a counting unit configured to perform, if it is determined by the determination unit that the detection signal is due to the particle, particle counting based on the detection signal after filtering.Type: ApplicationFiled: November 26, 2018Publication date: May 30, 2019Inventors: Mitsuaki SAITOU, Masaki SHIMMURA, Tomonobu MATSUDA, Yuki YAMAKAWA
-
Patent number: 10054529Abstract: An irradiation optical system 12 irradiates a fluid flowing in a flow passage 2a with one light among a plurality of lights obtained by branching light from a light source 1 and forms the detection area. A detection optical system 13 makes scattered light with a different direction from an optical axis of the irradiation optical system enter a beam splitter 17 among the scattered lights from particles contained in the fluid in this detection area. Meanwhile, a beam expander 16 makes another light among the plurality of lights enter the beam splitter 17 as reference light. A detector 4 receives an interference light, by the scattered light and the reference light, obtained by the beam splitter 17 by light receiving elements and generates a detection signal corresponding to the interference light. A counting unit 6 counts the particles based on this detection signal.Type: GrantFiled: March 4, 2016Date of Patent: August 21, 2018Assignee: RION Co., Ltd.Inventors: Tomonobu Matsuda, Masaki Shimmura, Yuki Yamakawa
-
Patent number: 9983113Abstract: Provided is a particle counter including: a light source; a light superimposition unit configured to superimpose light beams; an irradiation optical system configured to irradiate a fluid in a flow passage with one of a plurality of light beams from the light source; a detection optical system configured to make a part of scattered light beams by a particle in the fluid enter the light superimposition unit; a reference optical system configured to split another one of the plurality of light beams into a plurality of reference light beams and makes the reference light beams enter the light superimposition unit; and a counting unit configured to count the particles on the basis of detection signals corresponding to an interference light beam received by a light receiver. The interference light beam is generated by interference between the scattered light beam and one of the reference light beams at the light superimposition unit, and is received by the light receiver corresponding to the reference light beam.Type: GrantFiled: November 30, 2016Date of Patent: May 29, 2018Assignee: RION CO., LTD.Inventors: Tomonobu Matsuda, Masaki Shimmura, Mitsuaki Saitou, Yuki Yamakawa
-
Publication number: 20180038781Abstract: An irradiation optical system 12 irradiates a fluid flowing in a flow passage 2a with one light among a plurality of lights obtained by branching light from a light source 1 and forms the detection area. A detection optical system 13 makes scattered light with a different direction from an optical axis of the irradiation optical system enter a beam splitter 17 among the scattered lights from particles contained in the fluid in this detection area. Meanwhile, a beam expander 16 makes another light among the plurality of lights enter the beam splitter 17 as reference light. A detector 4 receives an interference light, by the scattered light and the reference light, obtained by the beam splitter 17 by light receiving elements and generates a detection signal corresponding to the interference light. A counting unit 6 counts the particles based on this detection signal.Type: ApplicationFiled: March 4, 2016Publication date: February 8, 2018Inventors: Tomonobu MATSUDA, Masaki SHIMMURA, Yuki YAMAKAWA
-
Patent number: 9823190Abstract: A particle counter for chemical solution in this disclosure uses a flow cell through which a chemical solution including particles flows, a laser light, and a light-receiving element array. Scattered light from the particles passing through a detection region on an optical path of the laser light in the flow cell is condensed to the light-receiving element array. The laser light in the center of the detection region has an energy density of 3×108 mW/cm2 or more. Each of plural light-receiving elements (a) is larger in length and width than a spot diameter of the scattered light, and (b) receives the scattered light from a region with a size of 760 ?m2 or less included in the detection region. The signal processing unit counts the particles passing through the detection region by use of a threshold corresponding to the smallest measurable particle size of 0.03 ?m.Type: GrantFiled: September 21, 2015Date of Patent: November 21, 2017Assignee: RION CO., LTD.Inventors: Takashi Minakami, Masaki Shimmura, Tomonobu Matsuda
-
Publication number: 20170160178Abstract: Provided is a particle counter including: a light source; a light superimposition unit configured to superimpose light beams; an irradiation optical system configured to irradiate a fluid in a flow passage with one of a plurality of light beams from the light source; a detection optical system configured to make a part of scattered light beams by a particle in the fluid enter the light superimposition unit; a reference optical system configured to split another one of the plurality of light beams into a plurality of reference light beams and makes the reference light beams enter the light superimposition unit; and a counting unit configured to count the particles on the basis of detection signals corresponding to an interference light beam received by a light receiver. The interference light beam is generated by interference between the scattered light beam and one of the reference light beams at the light superimposition unit, and is received by the light receiver corresponding to the reference light beam.Type: ApplicationFiled: November 30, 2016Publication date: June 8, 2017Inventors: Tomonobu MATSUDA, Masaki SHIMMURA, Mitsuaki SAITOU, Yuki YAMAKAWA
-
Publication number: 20160091407Abstract: A particle counter for chemical solution in this disclosure uses a flow cell through which a chemical solution including particles flows, a laser light, and a light-receiving element array. Scattered light from the particles passing through a detection region on an optical path of the laser light in the flow cell is condensed to the light-receiving element array. The laser light in the center of the detection region has an energy density of 3×108 mW/cm2 or more. Each of plural light-receiving elements (a) is larger in length and width than a spot diameter of the scattered light, and (b) receives the scattered light from a region with a size of 760 ?m2 or less included in the detection region. The signal processing unit counts the particles passing through the detection region by use of a threshold corresponding to the smallest measurable particle size of 0.03 ?m.Type: ApplicationFiled: September 21, 2015Publication date: March 31, 2016Applicant: RION CO., LTD.Inventors: Takashi MINAKAMI, Masaki SHIMMURA, Tomonobu MATSUDA
-
Patent number: 8958067Abstract: A light scattering particle counter that improves the signal-to-noise ratio by attenuating the high frequency noise component while suppressing the attenuation of the signal component by irradiating a sample fluid with a laser beam La to form a particle detection area, detecting a particle with a multi-channel light detecting element that receives scattered light Ls from a particle passing through the particle detection area, and with low pass filters having time constants ?c, ?m, ?e that are set to depend on beam diameter of the laser beam La and flow velocity of the fluid which flows through each divided area, to count particles in the sample fluid.Type: GrantFiled: November 5, 2013Date of Patent: February 17, 2015Assignee: Rion Co., Ltd.Inventors: Masaki Shimmura, Takehiro Imai, Takuya Tabuchi
-
Publication number: 20140285802Abstract: [Subject] To offer a light scattering particle counter that improves the SN ratio by sufficiently attenuating the high frequency noise component while suppressing the attenuation of the signal component. [Means for Solving the Problems] A light scattering particle counter which irradiates a laser beam La to a sample fluid and forms a particle detection area 13, a multi-channel light detecting element receives scattered light Ls from a particle passing through the particle detection area and detects the particle, the time constants ?c, ?m, ?e of the low pass filters F1, F2, F3, F4, F5 are set depending on the beam diameter of the laser beam La and the flow velocity of the fluid which flows through each divided area.Type: ApplicationFiled: November 5, 2013Publication date: September 25, 2014Applicant: Rion Co., Ltd.Inventors: Masaki SHIMMURA, Takehiro IMAI, Takuya TABUCHI