Patents by Inventor Masaki Tagome

Masaki Tagome has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160159236
    Abstract: A vehicle storage battery management device includes a charge level acquiring portion, a power capacity acquiring portion and, a power capacity deriving portion. The charge level acquiring portion acquires data of a charge level, which indicates a ratio of a capacity of a storage battery installed in an electric drive vehicle to a full charge capacity of the storage battery, from the electric drive vehicle. The power capacity acquiring portion acquires data of an amount of charging power supplied to the storage battery or data of an amount of discharging power discharged from the storage battery. The power capacity deriving portion derives a unit capacity of the storage battery based on the amount of charging power or the amount of discharging power, and a change in the charge level that occurs according to the amount of charging power or the amount of discharging power.
    Type: Application
    Filed: June 20, 2014
    Publication date: June 9, 2016
    Inventors: Masaki TAGOME, Susumu KOBAYASHI, Masakazu ADACHI, Mitsuru TANABE
  • Patent number: 9179504
    Abstract: To aim to reduce ripple current flowing through a capacitor in a power converter apparatus including a converter, the capacitor and an inverter. A current sensor 6 is connected between a capacitor 5 and an inverter circuit 7 for detecting current Iinv flowing from the capacitor 5 to the inverter circuit 7. A frequency detecting subunit 11 performs fast Fourier transform on a waveform of the current Iinv to detect a frequency of a frequency component having the largest amplitude. Also, the frequency detecting subunit 12 detects a zero-cross point of the frequency component having the largest amplitude. Then a carrier signal control subunit 13 performs control such that a frequency and a rise time of a PWM carrier signal for driving the converter circuit 4 match the frequency and the zero-cross point that have been detected by the frequency detecting subunit 11 and the phase detecting subunit 12.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: November 3, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Shun Kazama, Masaki Tagome, Makoto Kitabatake
  • Patent number: 8885368
    Abstract: A power converter for effectively reducing switching noise is provided. The power converter comprises a capacitor 111; switching devices Q11a and Q11b connected to the capacitor 111 in parallel; and a controller 105 that controls each switching device individually to perform switching operations. Each of the switching devices Q11a and Q11b forms a closed circuit together with the capacitor 111. The controller 105 controls the switching devices Q11a and Q11b to perform switching operations of switching ON or OFF at different timings such that at least two closed circuits including the switching devices Q11a and Q11b mutually cancel ringing voltages occurring therein, each ringing voltage occurring due to the switching operations performed by a corresponding switching device and having a frequency defined by an inductance of a corresponding closed circuit and an output capacity of a switching device included in the corresponding closed circuit.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: November 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Shun Kazama, Masaki Tagome, Makoto Kitabatake
  • Patent number: 8680794
    Abstract: A small-sized load drive system which, even with three three-phase inverters, significantly reduces noise regardless of control duty ratio. The load drive system includes three-phase inverters, and first, second, and third control units. The inverters are connected to loads, respectively. The first control unit generates sawtooth wave voltage and controls the inverter according to the sawtooth wave voltage. The second control unit generates inverse sawtooth wave voltage and controls the inverter according to the inverse sawtooth wave voltage. The third control unit generates triangular wave voltage which has ramps respectively equal to the sawtooth/inverse sawtooth wave voltage and either has a same phase or is out of phase by half a period relative to the sawtooth/inverse sawtooth wave voltage, and also controls the inverter according to the triangular wave voltage.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: March 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Shun Kazama, Makoto Kitabatake, Masaki Tagome
  • Patent number: 8519592
    Abstract: A synchronous electric motor includes rotor having a plurality of radially-oriented magnetic dipoles and a stator. Stator teeth group with a plurality of sets of stator teeth are arranged in the same position in terms of an electrical angle with another stator teeth group to provide rotational symmetry about an axis of the rotor. In each of the stator teeth groups a predetermined number of stator teeth are arranged at intervals different from intervals of the rotor magnetic dipoles. A main coil is wound about a predetermined number of stator teeth with a sub-coil further wound around one or more a teeth. Phase and magnitude of a resulting magnetic field is adjusted by the number of loops of the main coil and sub-coil. A given stator tooth can produce maximum torque despite any difference between an alignment of the stator tooth and an inter-polar interval of the stator.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: August 27, 2013
    Assignee: Panasonic Corporation
    Inventors: Noriyoshi Nishiyama, Masaki Tagome, Yasuhiro Kondo, Makoto Kitabatake, Shun Kazama
  • Patent number: 8508180
    Abstract: A motor drive apparatus receiving power from a power source and driving a motor with independent polyphase systems of excitation coils, comprises: a control circuit and power converters each corresponding to one system, each including an inverter circuit, an interrupter circuit, and a temperature detector, the inverter circuits being connected in series to the power source and, while not short-circuited, supplying power to the excitation coil, wherein the control circuit detects an operating state of the motor, short-circuits the inverter circuits and interrupts the interrupter circuits for a subset of power converters defined according to the operating state, such that a source voltage is supplied to non-short-circuited inverter circuits, and, when a power converter exceeds a predetermined temperature, the control circuit short-circuits the inverter circuit and interrupts the interrupter circuit thereof, and, in another power converter not exceeding the predetermined temperature, operates the inverter circui
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: August 13, 2013
    Assignee: Panasonic Corporation
    Inventors: Masaki Tagome, Shun Kazama
  • Patent number: 8508966
    Abstract: Provided are semiconductor elements 107A, 107B, and 107C that allow a current to flow that is at most a maximum current determined by the level of control signals VGA, VGB, and VGC and that depends on the difference between the voltage of a DC power supply BA and the charging voltage of a capacitor 102, a controller 105 that outputs a control signal to each semiconductor element, and a temperature detection circuit that detects the temperature of each semiconductor element. Until a predetermined time elapses after the electric circuit is closed, the controller 105 adjusts the level of each control signal based on the temperature detected by the temperature detection circuit so that current through the electric circuit does not exceed a current limit, and after the predetermined time period elapses, the controller 105 adjusts the level of each control signal so that current through the electric circuit is allowed to exceed the current limit.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: August 13, 2013
    Assignee: Panasonic Corporation
    Inventor: Masaki Tagome
  • Patent number: 8497648
    Abstract: The present invention provides a synchronous motor drive system designed to realize reduced vibration and noise along with high output. The system includes: inverters 101, 102, and 103 for converting a direct current to a three-phase alternating current; a current application control unit 52 that controls operations of the three-phase inverters; and a synchronous motor 41 driven by three-phase alternating currents supplied from the three-phase inverters. The current application control unit 52 determines, for each three-phase inverter, a current phase angle and a current amount of a three-phase alternating current to output, and each inverter supplies a three-phase alternating current having the determined current phase angle and current amount to a different one of three-phase coil groups 200a to 200c.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: July 30, 2013
    Assignee: Panasonic Corporation
    Inventors: Masaki Tagome, Noriyoshi Nishiyama, Yasuhiro Kondo, Makoto Kitabatake, Shun Kazama
  • Patent number: 8405341
    Abstract: The present invention aims to provide a synchronous motor drive system that is capable of suppressing ripples in current while reducing switching loss. The system includes three-phase inverters 201-203, a control circuit 400 for controlling the operations of the three-phase inverters and a synchronous motor 300 including a plurality of three-phase coils. To control the operations of the three-phase inverters, the control circuit 400 causes the three-phase inverters 201 and 203 and the three-phase inverter 202 to use different carrier frequencies to generate three-phase AC power, and each of the three-phase inverters supplies a different one of the three-phase coils with three-phase AC power.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: March 26, 2013
    Assignee: Panasonic Corporation
    Inventor: Masaki Tagome
  • Patent number: 8390165
    Abstract: Provided is a synchronous motor including a rotor having magnetic poles distributed circumferentially along a rotation direction of the rotor at equal intervals, and a stator having stator teeth arranged circumferentially along the rotation direction of the rotor, each tooth wound with a stator coil by concentrated winding. Every M consecutive stator teeth belong to one of stator teeth groups arranged at equal intervals. The M consecutive stator teeth in each stator teeth group are arranged at intervals different from the intervals of the magnetic poles of the rotor. The stator coils wound around the M consecutive stator teeth are connected to separate terminals. A motor driver supplies currents of different phases to the stator coils via the respective terminals.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: March 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Noriyoshi Nishiyama, Masaki Tagome, Yasuhiro Kondo, Makoto Kitabatake, Shun Kazama
  • Publication number: 20130039100
    Abstract: A power converter for effectively reducing switching noise is provided. The power converter comprises a capacitor 111; switching devices Q11a and Q11b connected to the capacitor 111 in parallel; and a controller 105 that controls each switching device individually to perform switching operations. Each of the switching devices Q11a and Q11b forms a closed circuit together with the capacitor 111. The controller 105 controls the switching devices Q11a and Q11b to perform switching operations of switching ON or OFF at different timings such that at least two closed circuits including the switching devices Q11a and Q11b mutually cancel ringing voltages occurring therein, each ringing voltage occurring due to the switching operations performed by a corresponding switching device and having a frequency defined by an inductance of a corresponding closed circuit and an output capacity of a switching device included in the corresponding closed circuit.
    Type: Application
    Filed: June 17, 2011
    Publication date: February 14, 2013
    Inventors: Shun Kazama, Masaki Tagome, Makoto Kitabatake
  • Publication number: 20130026968
    Abstract: A motor drive apparatus receiving power from a power source and driving a motor with independent polyphase systems of excitation coils, comprises: a control circuit and power converters each corresponding to one system, each including an inverter circuit, an interrupter circuit, and a temperature detector, the inverter circuits being connected in series to the power source and, while not short-circuited, supplying power to the excitation coil, wherein the control circuit detects an operating state of the motor, short-circuits the inverter circuits and interrupts the interrupter circuits for a subset of power converters defined according to the operating state, such that a source voltage is supplied to non-short-circuited inverter circuits, and, when a power converter exceeds a predetermined temperature, the control circuit short-circuits the inverter circuit and interrupts the interrupter circuit thereof, and, in another power converter not exceeding the predetermined temperature, operates the inverter circui
    Type: Application
    Filed: February 2, 2012
    Publication date: January 31, 2013
    Inventors: Masaki Tagome, Shun Kazama
  • Patent number: 8363440
    Abstract: In a power conversion circuit operating with high frequency, an off-voltage control circuit 101u of a lower-arm gate drive circuit 24u controls the output voltage of a gate drive power supply 103u to change the output voltage to a voltage lower than a predetermined off voltage during a time period from termination of turn-off operation of a lower arm 22u until start of turn-on operation of an upper arm 21u, and thereafter return the output voltage to the predetermined off voltage immediately after termination of the turn-on operation of the upper arm 21u. With this control, short-circuiting through the upper and lower arms occurring due to a high voltage change dv/dt can be avoided, and the life of a switching element constituting the power conversion circuit improves, increasing the reliability of the power conversion circuit.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: January 29, 2013
    Assignee: Panasonic Corporation
    Inventors: Masaki Tagome, Makoto Kitabatake, Shun Kazama
  • Publication number: 20130009624
    Abstract: Provided are semiconductor elements 107A, 107B, and 107C that allow a current to flow that is at most a maximum current determined by the level of control signals VGA, VGB, and VGC and that depends on the difference between the voltage of a DC power supply BA and the charging voltage of a capacitor 102, a controller 105 that outputs a control signal to each semiconductor element, and a temperature detection circuit that detects the temperature of each semiconductor element. Until a predetermined time elapses after the electric circuit is closed, the controller 105 adjusts the level of each control signal based on the temperature detected by the temperature detection circuit so that current through the electric circuit does not exceed a current limit, and after the predetermined time period elapses, the controller 105 adjusts the level of each control signal so that current through the electric circuit is allowed to exceed the current limit.
    Type: Application
    Filed: February 2, 2012
    Publication date: January 10, 2013
    Inventor: Masaki Tagome
  • Patent number: 8351231
    Abstract: The present invention aims to provide a power converter with an arm including switching devices connected in parallel, realizing long lifespans of switching devices. An inverter includes an upper and a lower arm, and gate drive circuits each driving the corresponding arm according to a gate control signal Gup_s indicating ON/OFF periods. Each arm includes switching devices connected in parallel. Each gate drive circuit includes: a switching gate control circuit 230u bringing a switching device 210u into conduction at the beginning of the ON period and bringing the same out of conduction within the ON period; and a conduction gate control circuit 231u bringing switching devices 211u and 212u within a period from when the switching device 210u is brought into conduction until the same is brought out of conduction, wherein the switching device 210u has a lower parasitic capacitance than the switching devices 211u and the 212u.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: January 8, 2013
    Assignee: Panasonic Corporation
    Inventor: Masaki Tagome
  • Publication number: 20120307540
    Abstract: The present invention aims to provide a power converter with an arm including switching devices connected in parallel, realizing long lifespans of switching devices. An inverter includes an upper and a lower arm, and gate drive circuits each driving the corresponding arm according to a gate control signal Gup_s indicating ON/OFF periods. Each arm includes switching devices connected in parallel. Each gate drive circuit includes: a switching gate control circuit 230u bringing a switching device 210u into conduction at the beginning of the ON period and bringing the same out of conduction within the ON period; and a conduction gate control circuit 231u bringing switching devices 211u and 212u within a period from when the switching device 210u is brought into conduction until the same is brought out of conduction, wherein the switching device 210u has a lower parasitic capacitance than the switching devices 211u and the 212u.
    Type: Application
    Filed: February 4, 2011
    Publication date: December 6, 2012
    Inventor: Masaki Tagome
  • Publication number: 20110304236
    Abstract: Enhancing torque while reducing torque rippling. A synchronous electric motor, comprising a rotor 2 and a stator 3, wherein a plurality of stator teeth 7 form stator teeth groups 8 with three stator teeth 7 lined up circumferentially forming one group; for the three stator teeth, a main coil is independently wound and sub-coil is further wound around at least one of the stator teeth; coils in one phase are constituted by, in series, the three main coils included in one of the stator teeth groups 8 and sub-coils included in other stator teeth groups, serially connected; and coils in another phase comprise the sub-coils included in one of the stator teeth groups 8 as well as three main coils included in other stator teeth groups.
    Type: Application
    Filed: July 27, 2009
    Publication date: December 15, 2011
    Inventors: Noriyoshi Nishiyama, Masaki Tagome, Yasuhiro Kondo, Makoto Kitabatake, Shun Kazama
  • Publication number: 20110260656
    Abstract: Provided is a small-sized load drive system which, even with three three-phase inverters, significantly reduces noise regardless of control duty ratio. The load drive system includes three-phase inverters 301 to 303, and first, second, and third control units 401 to 403. The inverters 301 to 303 are connected to loads 211 to 213, respectively. The first control unit 401 generates sawtooth wave voltage and controls the inverter 301 according to the sawtooth wave voltage. The second control unit 402 generates inverse sawtooth wave voltage and controls the inverter 302 according to the inverse sawtooth wave voltage. The third control unit 403 generates triangular wave voltage which has ramps respectively equal to the sawtooth/inverse sawtooth wave voltage and either has a same phase or is out of phase by half a period relative to the sawtooth/inverse sawtooth wave voltage, and also controls the inverter 303 according to the triangular wave voltage.
    Type: Application
    Filed: November 18, 2010
    Publication date: October 27, 2011
    Inventors: Shun Kazama, Makoto Kitabatake, Masaki Tagome
  • Publication number: 20110168697
    Abstract: To aim to reduce ripple current flowing through a capacitor in a power converter apparatus including a converter, the capacitor and an inverter. A current sensor 6 is connected between a capacitor 5 and an inverter circuit 7 for detecting current Iinv flowing from the capacitor 5 to the inverter circuit 7. A frequency detecting subunit 11 performs fast Fourier transform on a waveform of the current Iinv to detect a frequency of a frequency component having the largest amplitude. Also, the frequency detecting subunit 12 detects a zero-cross point of the frequency component having the largest amplitude. Then a carrier signal control subunit 13 performs control such that a frequency and a rise time of a PWM carrier signal for driving the converter circuit 4 match the frequency and the zero-cross point that have been detected by the frequency detecting subunit 11 and the phase detecting subunit 12.
    Type: Application
    Filed: July 30, 2010
    Publication date: July 14, 2011
    Inventors: Shun Kazama, Masaki Tagome, Makoto Kitabatake
  • Publication number: 20110101906
    Abstract: The present invention aims to provide a synchronous motor drive system that is capable of suppressing ripples in current while reducing switching loss. The system includes three-phase inverters 201-203, a control circuit 400 for controlling the operations of the three-phase inverters and a synchronous motor 300 including a plurality of three-phase coils. To control the operations of the three-phase inverters, the control circuit 400 causes the three-phase inverters 201 and 203 and the three-phase inverter 202 to use different carrier frequencies to generate three-phase AC power, and each of the three-phase inverters supplies a different one of the three-phase coils with three-phase AC power.
    Type: Application
    Filed: April 12, 2010
    Publication date: May 5, 2011
    Inventor: Masaki Tagome