Patents by Inventor Masaki Yanagisawa

Masaki Yanagisawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120309121
    Abstract: A method of making a semiconductor optical integrated device includes the steps of forming, on a substrate, a plurality of semiconductor integrated devices including a first optical semiconductor element having a first bonding pad and a second optical semiconductor element; forming a plurality of bar-shaped semiconductor optical integrated device arrays by cutting the substrate, each of the semiconductor optical integrated device arrays including two or more semiconductor optical integrated devices; alternately arranging the plurality of semiconductor optical integrated device arrays and a plurality of spacers in a thickness direction of the substrate so as to be fixed in place; and forming a coating film on a facet of the semiconductor optical integrated device array. Furthermore, the spacer has a movable portion facing the first bonding pad, the movable portion protruding toward the first bonding pad and being displaceable in a protruding direction.
    Type: Application
    Filed: May 24, 2012
    Publication date: December 6, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshihiro YONEDA, Hirohiko KOBAYASHI, Kenji KOYAMA, Masaki YANAGISAWA, Kenji HIRATSUKA
  • Patent number: 8241535
    Abstract: The present invention is to provide a method for manufacturing a planar optical waveguide and a micro-lens using a transcribed resin formed by the optical nano-imprint technique. The method includes a step for forming a resin contained with ultraviolet curable materials on the substrate. The mold is pressed against the resin. This step forms a patterned resin that reflects the pattern formed in the mold. After hardening the resin by irradiating the ultraviolet rays, the resin is cooled down as the mold is pressed against the resin from the temperature T1, where the mold is pressed, to T2 below T1. After cooling down the temperature of the resin, the mold is detached to complete the resin with the pattern transcribed from the mold.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: August 14, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masaki Yanagisawa
  • Publication number: 20120040041
    Abstract: A nano-imprint mold includes a mold body having a first surface provided with a pattern having projections and recesses, a second surface opposite the first surface and a side surface between the first surface and the second surface; and a mold base having a surface for fixing the mold body thereto. In addition, the second surface of the mold body is fixed to a part of the surface of the mold base, the second surface of the mold body being disposed away from at least a part of an edge of the surface of the mold base. Furthermore, the mold body has a shape such that a width thereof in a direction orthogonal to a direction extending from the first surface toward the second surface decreases from the first surface toward the second surface.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 16, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro TSUJI, Masaki Yanagisawa
  • Publication number: 20120003348
    Abstract: A nano-imprint mold includes a mold base; mold body having a first surface and a second surface opposite the first surface; and an elastic body disposed between a surface of the mold base and the first surface of the mold body, the elastic body being composed of resin. The second surface of the mold body is provided with a nano-imprint pattern. In addition, the elastic body has a bulk modulus lower than a bulk modulus of the mold body.
    Type: Application
    Filed: June 27, 2011
    Publication date: January 5, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yukihiro TSUJI, Masaki Yanagisawa
  • Publication number: 20110212556
    Abstract: A process using the nanoimprint technique to form the diffraction grating for the DFB-LD is disclosed. The process includes (a) coating a resist for the EB exposure on a dummy substrate, (b) irradiating the resist as varying the acceleration voltage, (c) forming a resist pattern by developing the irradiated resist, (d) coating the SOG film on the patterned resist, (e) attaching the silica substrate on the cured SOG film, and (f) removing the dummy substrate with the resist from the SOG film and the silica substrate. Using the mold thus formed, the diffraction grating for the DFB-LD is formed by the nanoimprint technique.
    Type: Application
    Filed: May 11, 2011
    Publication date: September 1, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Masaki Yanagisawa
  • Patent number: 7851240
    Abstract: A method of forming a diffraction grating according to the present invention includes a step of preparing a mold having projections and recesses for forming a diffraction grating, a step of bringing the projections and recesses of the mold into contact with a resin layer in a chamber at a first pressure less than atmospheric pressure, a step of setting a pressure in the chamber to a second pressure more than the first pressure while maintaining the contact, and a step of hardening the resin layer while maintaining the contact between the resin layer and the projections and recesses so as to form a pattern for the diffraction grating on the hardened resin layer. The recesses in the projections and recesses of the mold form a closed pattern in the plane of the mold including the projections and recesses.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: December 14, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masaki Yanagisawa
  • Patent number: 7763484
    Abstract: A method for forming a grating with an adjustable pitch and a method for forming a DFB-LD with an optical grating whose pitch is adjustable during the process are disclosed. The method of the invention; first prepares a mold with a pattern to form the grating; second, pushes the mold against the resin as deforming the mold; and third, hardens the mold. The resin with a periodic pattern whose pitch is adjustable during the process is available.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: July 27, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masaki Yanagisawa
  • Publication number: 20100081224
    Abstract: A method of forming a diffraction grating according to the present invention includes a step of preparing a mold having projections and recesses for forming a diffraction grating, a step of bringing the projections and recesses of the mold into contact with a resin layer in a chamber at a first pressure less than atmospheric pressure, a step of setting a pressure in the chamber to a second pressure more than the first pressure while maintaining the contact, and a step of hardening the resin layer while maintaining the contact between the resin layer and the projections and recesses so as to form a pattern for the diffraction grating on the hardened resin layer. The recesses in the projections and recesses of the mold form a closed pattern in the plane of the mold including the projections and recesses.
    Type: Application
    Filed: August 26, 2009
    Publication date: April 1, 2010
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventor: Masaki Yanagisawa
  • Patent number: 7667812
    Abstract: A liquid crystal display apparatus includes a first substrate provided with an alignment film on one surface thereof, and a second substrate provided with an alignment film on one surface thereof. The first and second substrates are arranged to oppose each other with the alignment films inside the opposed first and second substrates. Spacers are interposed between the first and second substrates, and pixels are arranged in a matrix in the display apparatus. The spacers are arranged such that, along a direction of rubbing treatment for the alignment film of the second substrate, not more than one spacer is provided per pixel, at least one spacer is present per three consecutive pixels, and no three consecutive pixels all have a respective spacer corresponding thereto.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: February 23, 2010
    Assignee: Casio Computer Co., Ltd.
    Inventor: Masaki Yanagisawa
  • Patent number: 7589334
    Abstract: The invention is intended to increase the number of patients treatable using one wheel having a thickness varied in the rotating direction to change energy of an ion beam passing the wheel. Ion beam delivery equipment for irradiating an ion beam to a patient for treatment comprises a beam generator for producing and accelerating the ion beam, an beam delivery nozzle including a range modulation wheel which has a predetermined thickness distribution in the rotating direction and is rotated on a travel passage of the ion beam generated from the beam generator to control a range of the ion beam, and an irradiation controller for controlling the beam producing and accelerating operation of the beam generator in accordance with the phase of rotation of the range modulation wheel.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: September 15, 2009
    Assignees: Hitachi, Ltd., Board of Regents, University of Texas System
    Inventors: Kazuo Hiramoto, Hiroshi Akiyama, Masaki Yanagisawa, Hisataka Fujimaki, Alfred Smith, Wayne Newhauser
  • Patent number: 7576342
    Abstract: The invention is intended to increase the number of patients treatable using one wheel having a thickness varied in the rotating direction to change energy of an ion beam passing the wheel. Ion beam delivery equipment for irradiating an ion beam to a patient for treatment comprises a beam generator for producing and accelerating the ion beam, an beam delivery nozzle including a range modulation wheel which has a predetermined thickness distribution in the rotating direction and is rotated on a travel passage of the ion beam generated from the beam generator to control a range of the ion beam, and an irradiation controller for controlling the beam producing and accelerating operation of the beam generator in accordance with the phase of rotation of the range modulation wheel.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: August 18, 2009
    Assignees: Hitachi, Ltd., Board of Regents, University of Texas System
    Inventors: Kazuo Hiramoto, Hiroshi Akiyama, Masaki Yanagisawa, Hisataka Fujimaki, Alfred P. Smith, Wayne Newhauser
  • Publication number: 20090053656
    Abstract: A process using the nanoimprint technique to form the diffraction grating for the DFB-LD is disclosed. The process includes (a) coating a resist for the EB exposure on a dummy substrate, (b) irradiating the resist as varying the acceleration voltage, (c) forming a resist pattern by developing the irradiated resist, (d) coating the SOG film on the patterned resist, (e) attaching the silica substrate on the cured SOG film, and (f) removing the dummy substrate with the resist from the SOG film and the silica substrate. Using the mold thus formed, the diffraction grating for the DFB-LD is formed by the nanoimprint technique.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 26, 2009
    Inventor: Masaki Yanagisawa
  • Publication number: 20090023238
    Abstract: A method for forming a grating with an adjustable pitch and a method for forming a DFB-LD with an optical grating whose pitch is adjustable during the process are disclosed. The method of the invention; first prepares a mold with a pattern to form the grating; second, pushes the mold against the resin as deforming the mold; and third, hardens the mold. The resin with a periodic pattern whose pitch is adjustable during the process is available.
    Type: Application
    Filed: June 6, 2008
    Publication date: January 22, 2009
    Inventor: Masaki Yanagisawa
  • Patent number: 7456415
    Abstract: A ridge filter or a range modulation wheel (RMW) is formed to have a shape corresponding to an affected part in the patient body. A plurality of spread-out Bragg peaks with the same dose or different doses are formed in the affected part by executing beam-on/off control of the RMW, beam current control with rotation of the RMW, intensity modulation control, or scanning irradiation. As an alternative, a spread-out Bragg peak containing a portion with a different dose is formed. A treatment time is cut.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: November 25, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Kazuo Hiramoto, Hiroshi Akiyama
  • Patent number: 7449701
    Abstract: Particle beam irradiation equipment and a method of adjusting irradiation nozzle, which can ensure a long range and high dose uniformity at any field size are provided. The particle beam irradiation equipment comprises charged particle beam generation equipment and an irradiation nozzle for irradiating a charged particle beam extracted from the charged particle beam generation equipment to an irradiation target. The irradiation nozzle comprises a first scatterer device including a first scatterer for spreading out the charged particle beam into a Gaussian-like distribution, and multiple stages of second scatterer devices including second scatterers for producing a uniform intensity distribution of the charged particle beam having been spread out into a Gaussian-like distribution by the first scatterer.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: November 11, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Hisataka Fujimaki, Koji Matsuda, Masaki Yanagisawa, Hiroshi Akiyama
  • Patent number: 7394082
    Abstract: The invention is intended to confirm whether the SOBP (spread-out Bragg peak) width is a desired value in real time during beam irradiation, and to improve safety in treatment. Ion beam delivery equipment comprises a beam generator including a synchrotron, an RMW (range modulation wheel) device for forming an SOBP width of an ion beam extracted from the beam generator, a beam delivery nozzle including a reference dose monitor and a main dose monitor which are installed respectively upstream and downstream of the RMW device in the direction of travel of the ion beam, and an SOBP width computing unit for computing the SOBP width of the ion beam, which is formed by the RMW device, based on values detected by both the reference dose monitor and the main dose monitor.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: July 1, 2008
    Assignees: Hitachi, Ltd., Board of Regents, The University of Texas System
    Inventors: Hisataka Fujimaki, Koji Matsuda, Hiroshi Akiyama, Masaki Yanagisawa, Alfred R. Smith, Kazuo Hiramoto
  • Patent number: 7385203
    Abstract: A charged particle beam extraction system and method capable of ensuring higher safety when extraction of an ion beam is on/off-controlled during irradiation of the ion beam for treatment. The charged particle beam extraction system comprises a charged particle beam generator including a synchrotron, a range modulation wheel (RMW) for forming a Bragg peak width of a charged particle beam extracted from the charged particle beam generator, a gate signal generator for controlling start and stop of extraction of the charged particle beam from the charged particle beam generator in accordance with a rotational angle of the RMW, and an irradiation control/determination section for determining whether the start and stop of extraction of the charged particle beam is controlled at desired timing by the gate signal generator.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: June 10, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Takahide Nakayama, Takayoshi Natori, Masaki Yanagisawa
  • Patent number: 7355189
    Abstract: The invention provides a charged particle therapy system capable of increasing the number of patients treated. An irradiation filed forming apparatus for irradiating a charged particle beam extracted from a charged particle beam generator to an irradiation target includes an RMW device. The RMW device comprises a housing and an RMW disposed within the housing. A rotary shaft of the RMW is rotatably mounted to the housing. The RMW device is detachably installed in an RMW holding member providied in a casing of the irradiation filed forming apparatus. The housing can be placed in contact with the RMW holding member, and hence positioning of the rotary shaft of the RMW to a predetermined position can be performed in a short time. This contributed to cutting a time required for treatment per patient and increasing the number of patients treated.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: April 8, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Patent number: 7297967
    Abstract: The present invention provides an increased degree of uniformity of radiation dose distribution for the interior of a diseased part. A particle beam therapy system includes a charged particle beam generation apparatus and an irradiation apparatus. An ion beam is generated by the charged particle beam generation apparatus. The irradiation apparatus exposes a diseased part to the generated ion beam. A scattering device, a range adjustment device, and a Bragg peak spreading device are installed upstream of a first scanning magnet and a second scanning magnet. The scattering device and the range adjustment device are combined together and moved along a beam axis, whereas the Bragg peak spreading device is moved independently along the beam axis. The scattering device moves to adjust the degree of ion beam scattering. The range adjustment device moves to adjust ion beam scatter changes caused by an absorber thickness adjustment.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: November 20, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Yanagisawa, Hiroshi Akiyama, Koji Matsuda, Hisataka Fujimaki
  • Publication number: 20070252093
    Abstract: The invention is intended to confirm whether the SOBP (spread-out Bragg peak) width is a desired value in real time during beam irradiation, and to improve safety in treatment. Ion beam delivery equipment comprises a beam generator including a synchrotron, an RMW (range modulation wheel) device for forming an SOBP width of an ion beam extracted from the beam generator, a beam delivery nozzle including a reference dose monitor and a main dose monitor which are installed respectively upstream and downstream of the RMW device in the direction of travel of the ion beam, and an SOBP width computing unit for computing the SOBP width of the ion beam, which is formed by the RMW device, based on values detected by both the reference dose monitor and the main dose monitor.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 1, 2007
    Inventors: Hisataka Fujimaki, Koji Matsuda, Hiroshi Akiyama, Masaki Yanagisawa, Alfred Smith, Kazuo Hiramoto