Patents by Inventor Masakiyo Matsumura

Masakiyo Matsumura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8435346
    Abstract: A phase modulation element according to the present invention has a first area having a first phase value based on a phase modulation unit having a predetermined size and a second area having a second phase value based on the phase modulation unit having the predetermined size, and each phase distribution is defined by a change in area shares of the first area and the second area depending on each position.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: May 7, 2013
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Masakiyo Matsumura, Yukio Taniguchi
  • Patent number: 8259375
    Abstract: The present invention comprises a light modulation optical system having a first element which forms a desired light intensity gradient distribution to an incident light beam and a second element which forms a desired light intensity minimum distribution with an inverse peak shape to the same, and an image formation optical system which is provided between the light modulation optical system and a substrate having a polycrystal semiconductor film or an amorphous semiconductor film, wherein the incident light beam to which the light intensity gradient distribution and the light intensity minimum distribution are formed is applied to the polycrystal semiconductor film or the amorphous semiconductor film through the image formation optical system, thereby crystallizing a non-crystal semiconductor film. The pattern of the first element is opposed to the pattern of the second element.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: September 4, 2012
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura, Noritaka Akita
  • Patent number: 8183122
    Abstract: Exact alignment of a recrystallized region, which is to be formed in an amorphous or polycrystalline film, is facilitated. An alignment mark is formed, which is usable in a step of forming an electronic device, such as a thin-film transistor, in the recrystallized region. In addition, in a step of obtaining a large-grain-sized crystal-phase semiconductor from a semiconductor film, a mark structure that is usable as an alignment mark in a subsequent step is formed on the semiconductor film in the same exposure step. Thus, the invention includes a light intensity modulation structure that modulates light and forms a light intensity distribution for crystallization, and a mark forming structure that modulates light and forms a light intensity distribution including a pattern with a predetermined shape, and also forms a mark indicative of a predetermined position on a crystallized region.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: May 22, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroyuki Ogawa, Noritaka Akita, Yukio Taniguchi, Masato Hiramatsu, Masayuki Jyumonji, Masakiyo Matsumura
  • Patent number: 8168979
    Abstract: According to a crystallization method, in the crystallization by irradiating a non-single semiconductor thin film of 40 to 100 nm provided on an insulation substrate with a laser light, a light intensity distribution having an inverse peak pattern is formed on the surface of the substrate, a light intensity gradient of the light intensity distribution is controlled, a crystal grain array is formed in which each crystal grain is aligned having a longer shape in a crystal growth direction than in a width direction and having a preferential crystal orientation (100) in a grain length direction, and a TFT is formed in which a source region and a drain region are formed so that current flows across a plurality of crystal grains of the crystal grain array in the crystal growth direction.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: May 1, 2012
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Tomoya Kato, Masakiyo Matsumura
  • Patent number: 8114217
    Abstract: There are provided a crystallization method which can design laser beam having a light intensity and a distribution optimized on an incident surface of a substrate, form a desired crystallized structure while suppressing generation of any other undesirable structure area and satisfy a demand for low-temperature processing, a crystallization apparatus, a thin film transistor and a display apparatus. When crystallizing a non-single-crystal semiconductor thin film by irradiating laser beam thereto, irradiation light beam to the non-single-crystal semiconductor thin film have a light intensity with a light intensity distribution which cyclically repeats a monotonous increase and a monotonous decrease and a light intensity which melts the non-single-crystal semiconductor. Further, at least a silicon oxide film is provided on a laser beam incident surface of the non-single-crystal semiconductor film.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: February 14, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masayuki Jyumonji, Hiroyuki Ogawa, Masakiyo Matsumura, Masato Hiramatsu, Yoshinobu Kimura, Yukio Taniguchi, Tomoya Kato
  • Patent number: 8052791
    Abstract: A phase modulation element according to the present invention has a first area having a first phase value based on a phase modulation unit having a predetermined size and a second area having a second phase value based on the phase modulation unit having the predetermined size, and each phase distribution is defined by a change in area shares of the first area and the second area depending on each position.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: November 8, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masakiyo Matsumura, Yukio Taniguchi
  • Patent number: 8009345
    Abstract: A crystallization apparatus includes a light modulation element, and an image forming optical system that forms a light intensity distribution set based on light transmitted through the light modulation element on an irradiation surface. The crystallization apparatus irradiates a non-single crystal semiconductor film with light having the light intensity distribution to generate a crystallized semiconductor film. A curvature radius of at least one isointensity line of a light intensity substantially varies along the isointensity line in the light intensity distribution on the irradiation surface, and a curvature radius of at least a part of the isointensity line has a minimum value of 0.3 ?m or below.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: August 30, 2011
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura, Kazufumi Azuma, Tomoya Kato, Takahiko Endo
  • Patent number: 7943936
    Abstract: A crystallizing method of causing a phase shifter to phase-modulate a laser beam whose wavelength is 248 nm or 300 nm or more from an excimer laser unit into a laser beam with a light intensity profile having a plurality of inverted triangular peak patterns in cross section and of irradiating the pulse laser beam onto a substrate to be crystallized for crystallization. The substrate to be crystallized is such that one or more silicon oxide films which present absorption properties to the laser beam and differ in the relative proportions of Si and O are provided on a laser beam incident face.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: May 17, 2011
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Masato Hiramatsu, Hiroyuki Ogawa, Masakiyo Matsumura
  • Publication number: 20110075237
    Abstract: A crystallization apparatus includes a light modulation element, and an image forming optical system that forms a light intensity distribution set based on light transmitted through the light modulation element on an irradiation surface. The crystallization apparatus irradiates a non-single crystal semiconductor film with light having the light intensity distribution to generate a crystallized semiconductor film. A curvature radius of at least one isointensity line of a light intensity substantially varies along the isointensity line in the light intensity distribution on the irradiation surface, and a curvature radius of at least a part of the isointensity line has a minimum value of 0.3 ?m or below.
    Type: Application
    Filed: December 8, 2010
    Publication date: March 31, 2011
    Inventors: Yukio TANIGUCHI, Masakiyo Matsumura, Kazufumi Azuma, Tomoya Kato, Takahiko Endo
  • Patent number: 7897946
    Abstract: A crystallization apparatus includes a light modulation element, and an image forming optical system that forms a light intensity distribution set based on light transmitted through the light modulation element on an irradiation surface. The crystallization apparatus irradiates a non-single crystal semiconductor film with light having the light intensity distribution to generate a crystallized semiconductor film. A curvature radius of at least one isointensity line of a light intensity substantially varies along the isointensity line in the light intensity distribution on the irradiation surface, and a curvature radius of at least a part of the isointensity line has a minimum value of 0.3 ?m or below.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: March 1, 2011
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura, Kazufumi Azuma, Tomoya Kato, Takahiko Endo
  • Publication number: 20100304546
    Abstract: Exact alignment of a recrystallized region, which is to be formed in an amorphous or polycrystalline film, is facilitated. An alignment mark is formed, which is usable in a step of forming an electronic device, such as a thin-film transistor, in the recrystallized region. In addition, in a step of obtaining a large-grain-sized crystal-phase semiconductor from a semiconductor film, a mark structure that is usable as an alignment mark in a subsequent step is formed on the semiconductor film in the same exposure step. Thus, the invention includes a light intensity modulation structure that modulates light and forms a light intensity distribution for crystallization, and a mark forming structure that modulates light and forms a light intensity distribution including a pattern with a predetermined shape, and also forms a mark indicative of a predetermined position on a crystallized region.
    Type: Application
    Filed: July 16, 2010
    Publication date: December 2, 2010
    Inventors: Hiroyuki Ogawa, Noritaka Akita, Yukio Taniguchi, Masato Hiramatsu, Masayuki Jyumonji, Masakiyo Matsumura
  • Patent number: 7843523
    Abstract: A method of producing a thin film transistor comprises irradiating a resist on a glass base plate with a ray from a light source through a mask and, thereafter, developing the resist to form contact holes, using an i-ray as the ray.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 30, 2010
    Assignee: Kabushiki Kaisha Ekisho Sentan Gijutsu Kaihatsu Center
    Inventors: Hirotaka Yamaguchi, Masakiyo Matsumura, Yukio Taniguchi
  • Patent number: 7830606
    Abstract: An optical device comprises a first cylindrical lens array in which a plurality of first lens segments each having a first radius of curvature and a first width so as to divide laser light into a plurality of light components are arranged, and a plurality of second lens segments each having a second radius of curvature and a second width, and provided in at least one position of the first cylindrical lens array so as to be arranged between adjacent first lens segments.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: November 9, 2010
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Takashi Ono, Kazufumi Azuma, Masakiyo Matsumura
  • Patent number: 7803520
    Abstract: The present invention comprises a light modulation optical system having a first element which forms a desired light intensity gradient distribution to an incident light beam and a second element which forms a desired light intensity minimum distribution with an inverse peak shape to the same, and an image formation optical system which is provided between the light modulation optical system and a substrate having a polycrystal semiconductor film or an amorphous semiconductor film, wherein the incident light beam to which the light intensity gradient distribution and the light intensity minimum distribution are formed is applied to the polycrystal semiconductor film or the amorphous semiconductor film through the image formation optical system, thereby crystallizing a non-crystal semiconductor film. The pattern of the first element is opposed to the pattern of the second element.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: September 28, 2010
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura, Noritaka Akita
  • Publication number: 20100214641
    Abstract: The present invention comprises a light modulation optical system having a first element which forms a desired light intensity gradient distribution to an incident light beam and a second element which forms a desired light intensity minimum distribution with an inverse peak shape to the same, and an image formation optical system which is provided between the light modulation optical system and a substrate having a polycrystal semiconductor film or an amorphous semiconductor film, wherein the incident light beam to which the light intensity gradient distribution and the light intensity minimum distribution are formed is applied to the polycrystal semiconductor film or the amorphous semiconductor film through the image formation optical system, thereby crystallizing a non-crystal semiconductor film. The pattern of the first element is opposed to the pattern of the second element.
    Type: Application
    Filed: May 4, 2010
    Publication date: August 26, 2010
    Applicant: Advanced LCD Technologies Dev.Ctr. Co., Ltd
    Inventors: Yukio Taniguchi, Masakiyo Matsumura, Noritaka Akita
  • Patent number: 7776151
    Abstract: A crystallization method which generates a crystallized semiconductor film by irradiating at least one of a polycrystal semiconductor film and an amorphous semiconductor film with light beams having a light intensity distribution with an inverse peak pattern that a light intensity is increased toward the periphery from an inverse peak at which the light intensity is minimum, wherein a light intensity value ? (standardized value) in the inverse peak when a maximum value of the light intensity in the light intensity distribution with the inverse peak pattern is standardized as 1 is set to 0.2?value ??0.8.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: August 17, 2010
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura
  • Patent number: 7751031
    Abstract: A light application apparatus includes an optical modulation element provided with a plurality of phase steps, a light beam which is entered into the optical modulation element being phase-modulated by the phase steps and exits from the optical modulation element as a light beam having a first light intensity distribution. An optical system is arranged between the optical modulation element and an predetermined plane. The optical system divides the phase-modulated light beam into at least two light fluxes having second and third light intensity distributions and different optical characteristics from each other, and projects a light beam including the divided two light fluxes, the light intensity distributions of the projected light fluxes being combined with each other, so that the projected light beam has a fourth light intensity distribution with an inverse peak shape on the predetermined plane and enters the predetermined plane.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: July 6, 2010
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura
  • Patent number: 7727913
    Abstract: A method of crystallizing a semiconductor film including splitting a pulse laser beam oscillated from a laser oscillator, and synthesizing the split pulse laser beams after the split pulse laser beams have propagated through optical paths different in optical path length, modulating the synthesized pulse laser beam into a pulse laser beam by a phase modulating element, and irradiating a non-single-crystal film formed on a substrate with the laser beam to crystallize the non-single-crystal film. Splitting the pulse laser beam and synthesizing the split pulse laser beams are performed using at least three optical splitting/synthesizing units arranged in order, and include sequentially splitting one pulse laser beam split by one optical splitting/synthesizing unit by succeeding splitting/synthesizing unit, and synthesizing the other pulse laser beam split by one optical splitting/synthesizing unit with the other pulse laser beam split by preceding splitting/synthesizing unit.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 1, 2010
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Shigeyuki Shimoto, Takashi Ono, Kazufumi Azuma, Masakiyo Matsumura
  • Patent number: 7692864
    Abstract: A crystallization method includes wavefront-dividing an incident light beam into a plurality of light beams, condensing the wavefront-divided light beams in a corresponding phase shift portion of a phase shift mask or in the vicinity of the phase shift portion to form a light beam having an light intensity distribution of an inverse peak pattern in which a light intensity is minimum in a point corresponding to the phase shift portion of the phase shift mask, and irradiating a polycrystalline semiconductor film or an amorphous semiconductor film with the light beam having the light intensity distribution to produce a crystallized semiconductor film.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: April 6, 2010
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yukio Taniguchi, Masakiyo Matsumura, Hirotaka Yamaguchi, Mikihiko Nishitani, Susumu Tsujikawa, Yoshinobu Kimura, Masayuki Jyumonji
  • Publication number: 20090284839
    Abstract: An optical device comprises a first cylindrical lens array in which a plurality of first lens segments each having a first radius of curvature and a first width so as to divide laser light into a plurality of light components are arranged, and a plurality of second lens segments each having a second radius of curvature and a second width, and provided in at least one position of the first cylindrical lens array so as to be arranged between adjacent first lens segments.
    Type: Application
    Filed: July 24, 2009
    Publication date: November 19, 2009
    Applicant: Advanced LCD Technologies Dev. Ctr. Co., Ltd
    Inventors: Takashi Ono, Kazufumi Azuma, Masakiyo Matsumura