Patents by Inventor Masako KIUCHI

Masako KIUCHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088688
    Abstract: A storage battery management device according to one embodiment includes a hardware processor that causes a display device to display first remaining life information and second remaining life information. The first remaining life information indicates current remaining life of a storage battery system. The first remaining life information is calculated on the basis of a state of health (SOH) of each of multiple storage battery modules constituting the storage battery system. The second remaining life information indicates remaining life of the storage battery system and corresponds to a case where one or more of the multiple storage battery modules are replaced with one or more other storage battery modules. The second remaining life information is calculated on the basis of an SOH of each storage battery module not being replaced and an SOH of each of the one or more other storage battery modules.
    Type: Application
    Filed: January 19, 2021
    Publication date: March 14, 2024
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Makoto IDE, Mami MIZUTANI, Yukitaka MONDEN, Masako KIUCHI, Takenori KOBAYASHI, Takahiro KASE, Kenji MITSUMOTO, Yoshihisa SUMIDA
  • Publication number: 20240069106
    Abstract: A storage battery management device includes an acquisition unit, a selection unit, an estimation unit, and a display control unit. The acquisition unit acquires a battery characteristic and an operation condition of a storage battery device. The selection unit selects data values from a data value group of a data item in which variation in data value is caused out of data items included in the battery characteristic and the acquired operation condition. The estimation unit estimates, for each of the selected data values, a battery characteristic after operation corresponding to a case where the storage battery device is operated under the operation condition. The battery characteristic is estimated on the basis of the battery characteristic and the operation condition acquired by the acquisition unit. The display control unit displays the battery characteristic estimated by the estimation unit in a comparable state.
    Type: Application
    Filed: January 20, 2021
    Publication date: February 29, 2024
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Yukitaka MONDEN, Makoto IDE, Masako KIUCHI, Mami MIZUTANI, Kenji MITSUMOTO, Takahiro KASE, Takenori KOBAYASHI, Yoshihisa SUMIDA
  • Publication number: 20240055882
    Abstract: A storage battery control device includes a hardware processor functioning as an acquisition unit, a first calculation unit, and a control part. The acquisition unit acquires operation conditions of a storage battery system including a storage battery being chargeable and dischargeable. The first calculation unit calculates, as a first predicted value, a battery capacity of the storage battery in a predetermined period on the basis of the operation conditions acquired by the acquisition unit. The battery capacity corresponds to a case where the storage battery is operated under the operation conditions. The control part controls a charging voltage when the storage battery system charges the storage battery. The charging voltage is controlled on the basis of the first predicted value calculated by the first calculation unit.
    Type: Application
    Filed: January 7, 2021
    Publication date: February 15, 2024
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Masako KIUCHI, Mami MIZUTANI, Takahiro KASE, Takenori KOBAYASHI, Makoto IDE, Yukitaka MONDEN, Kenji MITSUMOTO, Yoshihisa SUMIDA
  • Patent number: 11486931
    Abstract: A battery capacity estimation device in an embodiment includes one or more hardware processors configured to: acquire an alternating current power or an alternating current energy that is input to and output from a storage battery system via a direct current-alternating current converter, the storage battery system being capable of controlling charge and discharge; acquire a state of charge (SoC) of the storage battery system; and estimate a battery capacity of the storage battery system based on the acquired alternating current power or the acquired alternating current energy and the acquired SoC.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: November 1, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Masako Kiuchi, Mami Mizutani, Kenji Mitsumoto, Noriyuki Yamagishi, Toshiyuki Seto, Kenichi Wakasugi
  • Patent number: 11221370
    Abstract: A remaining battery energy estimation device according to an embodiment includes a current corrector, an SOC calculator, a voltage estimator, an SOC correction amount determiner, and a current error estimator. The current corrector determines a corrected current value on the basis of a current value and a current correction amount of a storage battery. The SOC calculator calculates an estimated SOC value of the storage battery on the basis of the corrected current value and an SOC correction amount. The voltage estimator determines an estimated voltage value of the storage battery on the basis of a temperature value of the storage battery, the corrected current value, and the estimated SOC value. The SOC correction amount determiner determines the SOC correction amount on the basis of a comparison between a voltage value of the storage battery and the estimated voltage value. The current error estimator determines the current correction amount on the basis of the SOC correction amount.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: January 11, 2022
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
    Inventors: Masahiro Tohara, Masako Kiuchi, Shunsuke Kawachi, Mami Mizutani, Takenori Kobayashi
  • Patent number: 11054475
    Abstract: A battery capacity estimation apparatus includes one or more hardware processors that: calculate a current integrated value by integrating electric currents of a secondary battery system whose capacity is to be estimated; calculate an SOC estimate value in a stabilization state where a change in SOC of a secondary battery per unit time is comparatively small; perform a regression analysis in which the current integrated value is defined as a dependent variable and the SOC estimate value is defined as an independent variable, the regression analysis being performed while correcting the current integrated value based on a value of a coefficient of determination so that a result of the regression analysis has predetermined accuracy; and estimate a capacity of the secondary battery system based on the result of the regression analysis.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: July 6, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Masahiro Tohara, Masako Kiuchi, Shunsuke Kawachi, Mami Mizutani, Takenori Kobayashi
  • Publication number: 20210055351
    Abstract: A battery capacity estimation device in an embodiment includes one or more hardware processors configured to: acquire an alternating current power or an alternating current energy that is input to and output from a storage battery system via a direct current-alternating current converter, the storage battery system being capable of controlling charge and discharge; acquire a state of charge (SoC) of the storage battery system; and estimate a battery capacity of the storage battery system based on the acquired alternating current power or the acquired alternating current energy and the acquired SoC.
    Type: Application
    Filed: July 23, 2020
    Publication date: February 25, 2021
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Masako KIUCHI, Mami MIZUTANI, Kenji MITSUMOTO, Noriyuki YAMAGISHI, Toshiyuki SETO, Kenichi WAKASUGI
  • Patent number: 10714937
    Abstract: A voltage reactive power control device includes a bus voltage fluctuation extracting unit that extracts a bus voltage fluctuation from a voltage of a secondary-side bus, an RE component extracting unit that extracts a fluctuation component due to renewable energy power generation from the bus voltage fluctuation, a creating unit that creates a reactive power command value for suppressing the fluctuation component based on the bus voltage fluctuation component due to the renewable energy power generation extracted by the RE component extracting unit, and a control unit that executes the reactive power control on a battery system based on the reactive power command value. The RE component extracting unit extracts the fluctuation component due to the renewable energy power generation by eliminating the fluctuation components other than the fluctuation component due to the renewable energy power generation from the bus voltage fluctuation.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: July 14, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Yoshio Ebata, Takenori Kobayashi, Yoko Kosaka, Tsutomu Tanno, Mami Mizutani, Masako Kiuchi
  • Patent number: 10714936
    Abstract: A system interconnecting facility is connected to a power system, and includes a plurality of power converters connected to the power system, a plurality of transformers provided between the power system and the power converters, a plurality of switches provided between the transformers and the power converters, and a controller that controls the opening and closing of the switch. The controller outputs, to the switches, open and close commands in so that the number of closed switches is out of a closed switch number range where a harmonic voltage of the system interconnecting facility increases, based on a harmonic voltage containing rate characteristic that is a relation between the number of closed switches and a harmonic voltage containing rate of the system interconnecting facility. The system interconnecting facility is capable of suppressing a harmonic voltage even if a circuit structure differs depending on a situation.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: July 14, 2020
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
    Inventors: Masayuki Kubota, Tsutomu Tanno, Mami Mizutani, Shinya Naoi, Masako Kiuchi, Midori Otsuki, Kazuyoshi Shimada
  • Publication number: 20200124676
    Abstract: A remaining battery energy estimation device according to an embodiment includes a current corrector, an SOC calculator, a voltage estimator, an SOC correction amount determiner, and a current error estimator. The current corrector determines a corrected current value on the basis of a current value and a current correction amount of a storage battery. The SOC calculator calculates an estimated SOC value of the storage battery on the basis of the corrected current value and an SOC correction amount. The voltage estimator determines an estimated voltage value of the storage battery on the basis of a temperature value of the storage battery, the corrected current value, and the estimated SOC value. The SOC correction amount determiner determines the SOC correction amount on the basis of a comparison between a voltage value of the storage battery and the estimated voltage value. The current error estimator determines the current correction amount on the basis of the SOC correction amount.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
    Inventors: Masahiro TOHARA, Masako Kiuchi, Shunsuke Kawachi, Mami Mizutani, Takenori Kobayashi
  • Publication number: 20200044451
    Abstract: A voltage reactive power control device includes a bus voltage fluctuation extracting unit that extracts a bus voltage fluctuation from a voltage of a secondary-side bus, an RE component extracting unit that extracts a fluctuation component due to renewable energy power generation from the bus voltage fluctuation, a creating unit that creates a reactive power command value for suppressing the fluctuation component based on the bus voltage fluctuation component due to the renewable energy power generation extracted by the RE component extracting unit, and a control unit that executes the reactive power control on a battery system based on the reactive power command value. The RE component extracting unit extracts the fluctuation component due to the renewable energy power generation by eliminating the fluctuation components other than the fluctuation component due to the renewable energy power generation from the bus voltage fluctuation.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 6, 2020
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Yoshio EBATA, Takenori KOBAYASHI, Yoko KOSAKA, Tsutomu TANNO, Mami MIZUTANI, Masako KIUCHI
  • Publication number: 20190052079
    Abstract: A system interconnecting facility is connected to a power system, and includes a plurality of power converters connected to the power system, a plurality of transformers provided between the power system and the power converters, a plurality of switches provided between the transformers and the power converters, and a controller that controls the opening and closing of the switch. The controller outputs, to the switches, open and close commands in so that the number of closed switches is out of a closed switch number range where a harmonic voltage of the system interconnecting facility increases, based on a harmonic voltage containing rate characteristic that is a relation between the number of closed switches and a harmonic voltage containing rate of the system interconnecting facility. The system interconnecting facility is capable of suppressing a harmonic voltage even if a circuit structure differs depending on a situation.
    Type: Application
    Filed: February 25, 2016
    Publication date: February 14, 2019
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
    Inventors: Masayuki KUBOTA, Tsutomu TANNO, Mami MIZUTANI, Shinya NAOI, Masako KIUCHI, Midori OTSUKI, Kazuyoshi SHIMADA
  • Patent number: 9985467
    Abstract: A control device of a power storage apparatus according to an embodiment includes a wind speed acquiring device, a power generation output detector, a capacity detector, and a controller. The wind speed acquiring device acquires a wind speed. The power generation output detector detects a power generation output of a wind power generation apparatus connected to a power system. The capacity detector detects a remaining capacity of the power storage apparatus that stores at least a portion of a power in the power generation output and supplies at least a portion of the stored power to the power system. The controller controls storage and supply of the power to suppress a variation in a combined output obtained by combining the power generation output and the power stored or supplied by the power storage apparatus, based on the wind speed, the power generation output, and the remaining capacity.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: May 29, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masako Kiuchi, Mami Mizutani, Toshimasa Yamada
  • Publication number: 20160233690
    Abstract: A control device of a power storage apparatus according to an embodiment includes a wind speed acquiring device, a power generation output detector, a capacity detector, and a controller. The wind speed acquiring device acquires a wind speed. The power generation output detector detects a power generation output of a wind power generation apparatus connected to a power system. The capacity detector detects a remaining capacity of the power storage apparatus that stores at least a portion of a power in the power generation output and supplies at least a portion of the stored power to the power system. The controller controls storage and supply of the power to suppress a variation in a combined output obtained by combining the power generation output and the power stored or supplied by the power storage apparatus, based on the wind speed, the power generation output, and the remaining capacity.
    Type: Application
    Filed: January 13, 2016
    Publication date: August 11, 2016
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masako KIUCHI, Mami MIZUTANI, Toshimasa YAMADA