Patents by Inventor Masami Okamura

Masami Okamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957052
    Abstract: According to one embodiment, a thermoelectric material are provided. The thermoelectric material includes a sintered body formed of p-type and n-type thermoelectric materials for the thermoelectric conversion element. The thermoelectric materials have a MgAgAs type crystal structure as a main phase. An area ratio of internal defects of the thermoelectric materials for one thermoelectric conversion element is 10% or less in terms of a total area ratio of defective portions in a scanning surface according to ultrasonic flaw detection in a thickness direction of the thermoelectric material. No defect having a length of 800 ?m or more is present at any vertex of chips of the thermoelectric materials.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: April 9, 2024
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Shinichi Yamamoto, Masami Okamura, Nobuaki Nakashima, Masanori Mizobe
  • Publication number: 20200028059
    Abstract: According to one embodiment, a thermoelectric material are provided. The thermoelectric material includes a sintered body formed of p-type and n-type thermoelectric materials for the thermoelectric conversion element. The thermoelectric materials have a MgAgAs type crystal structure as a main phase. An area ratio of internal defects of the thermoelectric materials for one thermoelectric conversion element is 10% or less in terms of a total area ratio of defective portions in a scanning surface according to ultrasonic flaw detection in a thickness direction of the thermoelectric material. No defect having a length of 800 ?m or more is present at any vertex of chips of the thermoelectric materials.
    Type: Application
    Filed: January 24, 2019
    Publication date: January 23, 2020
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Shinichi Yamamoto, Masami Okamura, Nobuaki Nakashima, Masanori Mizobe
  • Patent number: 10480052
    Abstract: A permanent magnet of the embodiment includes: a composition represented by a composition formula: R(FepMqCurCtCo1-p-q-r-t)z (R is at least one element selected from rare-earth elements, M is at least one element selected from Ti, Zr and Hf, 0.27?p?0.45, 0.01?q?0.05, 0.01?r?0.1, 0.002?t?0.03, and 6?z?9); and a metallic structure including a main phase containing a Th2Zn17 crystal phase, and a sub phase of the element M having an element M concentration of 30 atomic % or more. The sub phase of the element M precipitates in the metallic structure. A ratio of a circumferential length to a precipitated area of the sub phase of the element M is 1 or more and 10 or less.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: November 19, 2019
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Masaya Hagiwara, Shinya Sakurada, Yosuke Horiuchi, Tadahiko Kobayashi, Tsuyoshi Kobayashi, Masaki Endo, Naoyuki Sanada, Masami Okamura, Takao Sawa, Keiichi Fuse, Satoru Habu
  • Patent number: 9670369
    Abstract: A visible-light-responsive photocatalyst powder includes a tungsten oxide powder. The tungsten oxide powder has color whose a* is ?5 or less, b* is ?5 or more, and L* is 50 or more when the color of the powder is expressed by an L*a*b* color system. Further, the tungsten oxide powder has a BET specific surface area in a range of 11 to 820 m2/g.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: June 6, 2017
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura, Shinya Kasamatsu
  • Patent number: 9598584
    Abstract: A visible-light-responsive photocatalyst powder includes a tungsten oxide powder. When the tungsten oxide powder is measured by X-ray diffractometry, (1) among intensity ratios of a peak A (2?=22.8 to 23.4°), a peak B (2?=23.4 to 23.8°), a peak C (2?=24.0 to 24.25°), and a peak D (2?=24.25 to 24.5°), an A/D ratio and a B/D ratio each fall within a range of 0.5 to 2.0, and a C/D ratio falls within a range of 0.04 to 2.5, (2) an intensity ratio (E/F) of a peak E (2?=33.85 to 34.05°) to a peak F (2?=34.05 to 34.25°) falls within a range of 0.1 to 2.0, and (3) an intensity ratio (G/H) of a peak G (2?=49.1 to 49.7°) to a peak H (2?=49.7 to 50.3°) falls within a range of 0.04 to 2.0, and the tungsten oxide powder has a BET specific surface area in a range of 1.5 to 820 m2/g.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: March 21, 2017
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura
  • Publication number: 20170002445
    Abstract: A permanent magnet of the embodiment includes: a composition represented by a composition formula: R(FepMqCurCtCo1-p-q-r-t)z (R is at least one element selected from rare-earth elements, M is at least one element selected from Ti, Zr and Hf, 0.27?p?0.45, 0.01?q?0.05, 0.01?r?0.1, 0.002?t?0.03, and 6?z?9); and a metallic structure including a main phase containing a Th2Zn17 crystal phase, and a sub phase of the element M having an element M concentration of 30 atomic % or more. The sub phase of the element M precipitates in the metallic structure. A ratio of a circumferential length to a precipitated area of the sub phase of the element M is 1 or more and 10 or less.
    Type: Application
    Filed: September 1, 2016
    Publication date: January 5, 2017
    Inventors: Masaya Hagiwara, Shinya Sakurada, Yosuke Horiuchi, Tadahiko Kobayashi, Tsuyoshi Kobayashi, Masaki Endo, Naoyuki Sanada, Masami Okamura, Takao Sawa, Keiichi Fuse, Satoru Habu
  • Patent number: 8404617
    Abstract: An object of the invention is to provide a photocatalyst material having a higher catalyst effect than conventional photocatalyst materials. The photocatalyst material of the invention contains, as its major component, a tungsten oxide powder excited by a light source which emits light having a wavelength of 430 to 500 nm, the photocatalyst material having a decomposition ability of 50% or more wherein the decomposition ability is given by the following equation based on the following test: [Test for decomposition ability]: 1 g of a tungsten oxide powder and 20 ppm of acetaldehyde (amount A) are poured into a 3-liter glass container, and acetaldehyde (amount B) is measured after light having a peak wavelength of 460 nm±10 nm is irradiated to the mixture for 2 hours to measure the decomposition ability (%): Decomposition ability (%)=[(acetaldehyde amount A?acetaldehyde amount B)/acetaldehyde amount A]×100.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: March 26, 2013
    Assignee: Toshiba Materials Co., Ltd.
    Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Masami Okamura, Ryotaro Matsuda, Takaya Kamakura, Kazunari Otsuka, Kiyoshi Yokokura, Hideki Okawa, Ariyoshi Ishizaki
  • Patent number: 8173573
    Abstract: In one embodiment, a visible light responsive photocatalyst powder has organic gas decomposition performance that responds nonlinearly to an amount of irradiated light under visible light in an illuminance range of not less than 200 lx nor more than 2500 lx. The visible light responsive photocatalyst powder has a gas decomposition rate of 20% or more, for example, when visible light having only a wavelength of not less than 380 nm and an illuminance of 2500 lx is irradiated, the gas decomposition rate (%) being set as a value calculated based on [formula: (A?B)/A×100], where A represents a gas concentration before light irradiation and B represents a gas concentration when not less than 15 minutes have elapsed from the light irradiation and, at the same time, the gas concentration is stable, the gas concentrations being measured while allowing an acetaldehyde gas having an initial concentration of 10 ppm to flow into a flow-type apparatus in which 0.2 g of a sample is placed.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: May 8, 2012
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura, Shinya Kasamatsu, Yumi Ito
  • Patent number: 8083968
    Abstract: The solid scintillator according to the present invention is expressed by the following formula (1): [Formula 1] (M1-x-yGdxCey)3J5O12??(1) (wherein M is at least one element of La and Tb; J is at least one metal selected from the group consisting of Al, Ga, and In; and x and y are such that 0.5?x?1 and 0.000001?y?0.2). The transmittance of light having a wavelength of 550 nm measured at a thickness of 2 mm is equal to or greater than 40%. The solid scintillator according to the present invention can be manufactured at low cost, has a high light emitting power, and does not release Cd because Cd is not contained.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: December 27, 2011
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Yukihiro Fukuta, Masami Okamura, Yasuhiro Shirakawa
  • Patent number: 7923740
    Abstract: The present invention relates to a light emitting apparatus including a semiconductor light emitting element and a transparent ceramic phosphor for converting a wavelength of a light emitted from the semiconductor light emitting element, wherein the semiconductor light emitting element emits an ultraviolet light, and the ceramic phosphor corresponding to the semiconductor light emitting element has (i) a minimum transmission of 0.1 to 40% under a wavelength of 350-420 nm and (ii) a transmission of 10 to 90% under an emission peak wavelength of the ceramic phosphor.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: April 12, 2011
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Masami Okamura, Masaaki Tamatani, Naomi Shida, Kazuaki Ootsuka, Yukihiro Fukuta
  • Publication number: 20110024684
    Abstract: The solid scintillator according to the present invention is expressed by the following formula (1): [Formula 1] (M1-x-yGdxCey)3J5O12??(1) (wherein M is at least one element of La and Tb; J is at least one metal selected from the group consisting of Al, Ga, and In; and x and y are such that 0.5?x?1 and 0.000001?y?0.2). The transmittance of light having a wavelength of 550 nm measured at a thickness of 2 mm is equal to or greater than 40%. The solid scintillator according to the present invention can be manufactured at low cost, has a high light emitting power, and does not release Cd because Cd is not contained.
    Type: Application
    Filed: February 23, 2009
    Publication date: February 3, 2011
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Yukihiro Fukuta, Masami Okamura, Yasuhiro Shirakawa
  • Publication number: 20100292075
    Abstract: In one embodiment, a visible light responsive photocatalyst powder has organic gas decomposition performance that responds nonlinearly to an amount of irradiated light under visible light in an illuminance range of not less than 200 lx nor more than 2500 lx. The visible light responsive photocatalyst powder has a gas decomposition rate of 20% or more, for example, when visible light having only a wavelength of not less than 380 nm and an illuminance of 2500 lx is irradiated, the gas decomposition rate (%) being set as a value calculated based on [formula: (A?B)/A×100], where A represents a gas concentration before light irradiation and B represents a gas concentration when not less than 15 minutes have elapsed from the light irradiation and, at the same time, the gas concentration is stable, the gas concentrations being measured while allowing an acetaldehyde gas having an initial concentration of 10 ppm to flow into a flow-type apparatus in which 0.2 g of a sample is placed.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Inventors: Kayo NAKANO, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura, Shinya Kasamatsu, Yumi Ito
  • Publication number: 20100204040
    Abstract: A visible-light-responsive photocatalyst powder includes a tungsten oxide powder. When the tungsten oxide powder is measured by X-ray diffractometry, (1) among intensity ratios of a peak A (2?=22.8 to 23.4°), a peak B (2?=23.4 to 23.8°), a peak C (2?=24.0 to 24.25°), and a peak D (2?=24.25 to 24.5°), an A/D ratio and a B/D ratio each fall within a range of 0.5 to 2.0, and a C/D ratio falls within a range of 0.04 to 2.5, (2) an intensity ratio (E/F) of a peak E (2?=33.85 to 34.05°) to a peak F (2?=34.05 to 34.25°) falls within a range of 0.1 to 2.0, and (3) an intensity ratio (G/H) of a peak G (2?=49.1 to 49.7°) to a peak H (2?=49.7 to 50.3°) falls within a range of 0.04 to 2.0, and the tungsten oxide powder has a BET specific surface area in a range of 1.5 to 820 m2/g.
    Type: Application
    Filed: September 5, 2008
    Publication date: August 12, 2010
    Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura
  • Publication number: 20100204041
    Abstract: A visible-light-responsive photocatalyst powder includes a tungsten oxide powder. The tungsten oxide powder has color whose a* is ?5 or less, b* is ?5 or more, and L* is 50 or more when the color of the powder is expressed by an L*a*b* color system. Further, the tungsten oxide powder has a BET specific surface area in a range of 11 to 820 m2/g.
    Type: Application
    Filed: September 5, 2008
    Publication date: August 12, 2010
    Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura, Shinya Kasamatsu
  • Publication number: 20100193001
    Abstract: A thermoelectric conversion module (10) comprises a first electrode member (13) arranged on a low temperature side, a second electrode member (14) arranged on a high temperature side, and p-type and n-type thermoelectric elements (11 and 12) arranged between and connected electrically with both the first and second electrode members (13 and 14). The thermoelectric elements (11 and 12) are composed of a thermoelectric material (half-Heusler material) containing an intermetallic compound having an MgAgAs crystal structure as a main phase and have a fracture toughness value K1C of not less than 1.3 MPa·m1/2 and less than 10 MPa·m1/2.
    Type: Application
    Filed: June 23, 2008
    Publication date: August 5, 2010
    Inventors: Shinsuke Hirono, Masami Okamura, Fumiyuki Kawashima
  • Patent number: 7675039
    Abstract: A phosphor sheet 8 for a radiation detector used by being attached to a photoelectric conversion film 20 of a radiation detector 4 includes a sheet-shaped support 11, and a phosphor layer 12 provided thereon. The phosphor layer 12 contains a europium-activated rare earth oxysulfide phosphor having a europium concentration in a range of 0.01 to 3.5 mol %. The radiation detector 4 includes the phosphor sheet 8 being irradiated with radiation rays transmitted through a specimen and converting the radiation rays into light, a photoelectric conversion film 20 for converting the light from the phosphor sheet 8 into electric charges, and a charge information reading section 30 for reading out the charges generated on the photoelectric conversion film 20 for each of a plurality of pixels 31.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: March 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Oyaizu, Masami Okamura
  • Publication number: 20090057698
    Abstract: A light emitting apparatus 1 comprises: a semiconductor light emitting element 2; and a transparent ceramic phosphor 11 for converting a wavelength of a light emitted from the semiconductor light emitting element 2, wherein the semiconductor light emitting element 2 emits an ultraviolet light, and the ceramic phosphor 11 corresponding to the semiconductor light emitting element 2 has: a minimum transmission of 0.1 to 40% under a wavelength of 350-420 nm; and a transmission of 10 to 90% under an emission peak wavelength of the ceramic phosphor.
    Type: Application
    Filed: February 23, 2006
    Publication date: March 5, 2009
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Masami Okamura, Masaaki Tamatani, Naomi Shida, Kazuaki Ootsuka, Yukihiro Fukuta
  • Publication number: 20090038667
    Abstract: A thermoelectric conversion module (10) used at temperatures of 300° C. or more includes a first substrate (15) disposed on a low temperature side, a second substrate (16) disposed on a high temperature side, first and second electrode members (13, 14) provided to face the element mounting regions of these substrates (15, 16), and a plurality of thermoelectric elements (11, 12) disposed between the electrode members (13, 14). An occupied area ratio of the thermoelectric elements (11, 12) in the module is set to 69% or more, and an output per unit area of the thermoelectric conversion module (10) is made to increase.
    Type: Application
    Filed: November 22, 2006
    Publication date: February 12, 2009
    Inventors: Shinsuke Hirono, Masami Okamura, Fumiyuki Kawashima
  • Publication number: 20090023583
    Abstract: An object of the invention is to provide a photocatalyst material having a higher catalyst effect than conventional photocatalyst materials. The photocatalyst material of the invention contains, as its major component, a tungsten oxide powder excited by a light source which emits light having a wavelength of 430 to 500 nm, the photocatalyst material having a decomposition ability of 50% or more wherein the decomposition ability is given by the following equation based on the following test: [Test for Decomposition Ability] 1 g of a tungsten oxide powder and 20 ppm of acetaldehyde (amount A) are poured into a 3-liter glass container, and acetaldehyde (amount B) is measured after light having a peak wavelength of 460 nm±10 nm is irradiated to the mixture for 2 hours to measure the decomposition ability (%): Decomposition ability(%)=[(acetaldehyde amount A?acetaldehyde amount B)/acetaldehyde amount A]×100.
    Type: Application
    Filed: August 1, 2008
    Publication date: January 22, 2009
    Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Masami Okamura, Ryotaro Matsuda, Takaya Kamakura, Kazunari Otsuka, Kiyoshi Yokokura, Hideki Okawa, Ariyoshi Ishizaki
  • Publication number: 20080250847
    Abstract: A detector for detecting a gaseous component in a gas is comprised of a sensor having a gas detecting region configured to output an electric signal in response to detection of the gaseous component and a contact portion configured to conduct the electric signal; an enclosure housing the sensor and having a through hole configured to introduce the gas to the gas detecting region; a wiring partly facing to the contact portion and being led out of the enclosure; an electric conductor interposed between the contact portion and the wiring; a packing member surrounding the through hole and so as to make a gap between the sensor and the enclosure impervious to the gas.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 16, 2008
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Tomoyuki KITANI, Miyuki Takenaka, Mitsuhiro Oki, Masami Okamura